CRISPR-Cas systems and RNA-guided interference

被引:142
作者
Barrangou, Rodolphe [1 ]
机构
[1] N Carolina State Univ, Dept Food Bioproc & Nutr Sci, Raleigh, NC 27695 USA
关键词
IMMUNE-SYSTEM; ANTIVIRAL DEFENSE; ESCHERICHIA-COLI; ACQUIRED-RESISTANCE; ADAPTIVE IMMUNITY; REPEATS CRISPRS; DNA; SEQUENCE; COMPLEX; MECHANISM;
D O I
10.1002/wrna.1159
中图分类号
Q2 [细胞生物学];
学科分类号
071009 ; 090102 ;
摘要
Clustered regularly interspaced short palindromic repeats (CRISPR) together with associated sequences (cas) form the CRISPR-Cas system, which provides adaptive immunity against viruses and plasmids in bacteria and archaea. Immunity is built through acquisition of short stretches of invasive nucleic acids into CRISPR loci as spacers'. These immune markers are transcribed and processed into small noncoding interfering CRISPR RNAs (crRNAs) that guide Cas proteins toward target nucleic acids for specific cleavage of homologous sequences. Mechanistically, CRISPR-Cas systems function in three distinct stages, namely: (1) adaptation, where new spacers are acquired from invasive elements for immunization; (2) crRNA biogenesis, where CRISPR loci are transcribed and processed into small interfering crRNAs; and (3) interference, where crRNAs guide the Cas machinery to specifically cleave homologous invasive nucleic acids. A number of studies have shown that CRISPR-mediated immunity can readily increase the breadth and depth of virus resistance in bacteria and archaea. CRISPR interference can also target plasmid sequences and provide a barrier against the uptake of undesirable mobile genetic elements. These inheritable hypervariable loci provide phylogenetic information that can be insightful for typing purposes, epidemiological studies, and ecological surveys of natural habitats and environmental samples. More recently, the ability to reprogram CRISPR-directed endonuclease activity using customizable small noncoding interfering RNAs has set the stage for novel genome editing and engineering avenues. This review highlights recent studies that revealed the molecular basis of CRISPR-mediated immunity, and discusses applications of crRNA-guided interference. (C) 2013 John Wiley & Sons, Ltd. How to cite this article: WIREs RNA 2013, 4:267-278. doi: 10.1002/wrna.1159
引用
收藏
页码:267 / 278
页数:12
相关论文
共 87 条
[1]   Interference with histidyl-tRNA synthetase by a CRISPR spacer sequence as a factor in the evolution of Pelobacter carbinolicus [J].
Aklujkar, Muktak ;
Lovley, Derek R. .
BMC EVOLUTIONARY BIOLOGY, 2010, 10
[2]   Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes [J].
Al-Attar, Sinan ;
Westra, Edze R. ;
van der Oost, John ;
Brouns, Stan J. J. .
BIOLOGICAL CHEMISTRY, 2011, 392 (04) :277-289
[3]   Virus population dynamics and acquired virus resistance in natural microbial communities [J].
Andersson, Anders F. ;
Banfield, Jillian F. .
SCIENCE, 2008, 320 (5879) :1047-1050
[4]   A dual function of the CRISPR-Cas system in bacterial antivirus immunity and DNA repair [J].
Babu, Mohan ;
Beloglazova, Natalia ;
Flick, Robert ;
Graham, Chris ;
Skarina, Tatiana ;
Nocek, Boguslaw ;
Gagarinova, Alla ;
Pogoutse, Oxana ;
Brown, Greg ;
Binkowski, Andrew ;
Phanse, Sadhna ;
Joachimiak, Andrzej ;
Koonin, Eugene V. ;
Savchenko, Alexei ;
Emili, Andrew ;
Greenblatt, Jack ;
Edwards, Aled M. ;
Yakunin, Alexander F. .
MOLECULAR MICROBIOLOGY, 2011, 79 (02) :484-502
[5]   CRISPR provides acquired resistance against viruses in prokaryotes [J].
Barrangou, Rodolphe ;
Fremaux, Christophe ;
Deveau, Helene ;
Richards, Melissa ;
Boyaval, Patrick ;
Moineau, Sylvain ;
Romero, Dennis A. ;
Horvath, Philippe .
SCIENCE, 2007, 315 (5819) :1709-1712
[6]   RNA-mediated programmable DNA cleavage [J].
Barrangou, Rodolphe .
NATURE BIOTECHNOLOGY, 2012, 30 (09) :836-838
[7]   CRISPR. New Horizons in Phage Resistance and Strain identification [J].
Barrangou, Rodolphe ;
Horvath, Philippe .
ANNUAL REVIEW OF FOOD SCIENCE AND TECHNOLOGY, VOL 3, 2012, 3 :143-162
[8]   Structure and activity of the Cas3 HD nuclease MJ0384, an effector enzyme of the CRISPR interference [J].
Beloglazova, Natalia ;
Petit, Pierre ;
Flick, Robert ;
Brown, Greg ;
Savchenko, Alexei ;
Yakunin, Alexander F. .
EMBO JOURNAL, 2011, 30 (22) :4616-4627
[9]   Comparative genomic and transcriptional analyses of CRISPR systems across the genus Pyrobaculum [J].
Bernick, David L. ;
Cox, Courtney L. ;
Dennis, Patrick P. ;
Lowe, Todd M. .
FRONTIERS IN MICROBIOLOGY, 2012, 3
[10]   CRISPR-Cas Systems in Bacteria and Archaea: Versatile Small RNAs for Adaptive Defense and Regulation [J].
Bhaya, Devaki ;
Davison, Michelle ;
Barrangou, Rodolphe .
ANNUAL REVIEW OF GENETICS, VOL 45, 2011, 45 :273-297