Large magnetic entropy change and magnetoresistance in a Ni41Co9Mn40Sn10 magnetic shape memory alloy

被引:53
作者
Huang, L. [1 ,2 ]
Cong, D. Y. [1 ]
Ma, L. [3 ]
Nie, Z. H. [2 ]
Wang, M. G. [4 ]
Wang, Z. L. [2 ]
Suo, H. L. [3 ]
Ren, Y. [5 ]
Wang, Y. D. [1 ]
机构
[1] Univ Sci & Technol Beijing, State Key Lab Adv Met & Mat, Beijing 100083, Peoples R China
[2] Beijing Inst Technol, Sch Mat Sci & Engn, Beijing 100081, Peoples R China
[3] Beijing Univ Technol, Coll Mat Sci & Engn, Beijing 100124, Peoples R China
[4] Northeastern Univ, Coll Sci, Shenyang 110819, Peoples R China
[5] Argonne Natl Lab, Xray Sci Div, Argonne, IL 60439 USA
基金
中国国家自然科学基金;
关键词
Magnetocaloric effect; Magnetoresistance; Magnetic shape memory alloy; Martensitic transformation; Synchrotron high-energy X-ray diffraction;
D O I
10.1016/j.jallcom.2015.06.175
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
A polycrystalline Ni41Co9Mn40Sn10 (at. %) magnetic shape memory alloy was prepared by arc melting and characterized mainly by magnetic measurements, in-situ high-energy X-ray diffraction (HEXRD), and mechanical testing. A large magnetoresistance of 53.8% (under 5 T) and a large magnetic entropy change of 31.9 J/(kg K) (under 5 T) were simultaneously achieved. Both of these values are among the highest values reported so far in Ni-Mn-Sn-based Heusler alloys. The large magnetic entropy change, closely related to the structural entropy change, is attributed to the large unit cell volume change across martensitic transformation as revealed by our in-situ HEXRD experiment. Furthermore, good compressive properties were also obtained. The combination of large magnetoresistance, large magnetic entropy change, and good compressive properties, as well as low cost makes this alloy a promising candidate for multifunctional applications. (C) 2015 Elsevier B.V. All rights reserved.
引用
收藏
页码:1081 / 1085
页数:5
相关论文
共 35 条
[1]  
ALGARABEL PA, 1995, APPL PHYS LETT, V66, P3062, DOI 10.1063/1.114278
[2]   The "colossal" magnetocaloric effect in Mn1-xFexAs: What are we really measuring? [J].
Balli, Mohamed ;
Fruchart, Daniel ;
Gignoux, Damien ;
Zach, Ryszard .
APPLIED PHYSICS LETTERS, 2009, 95 (07)
[3]   The crystal structure and phase transitions of the magnetic shape memory compound Ni2MnGa [J].
Brown, PJ ;
Crangle, J ;
Kanomata, T ;
Matsmuoto, M ;
Neumann, KU ;
Ouladdiaf, B ;
Ziebeck, KRA .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (43) :10159-10171
[4]   Magnetoresistance and magnetocaloric properties involving strong metamagnetic behavior in Fe-doped Ni45(Co1-xFex)5Mn36.6In13.4 alloys [J].
Chen, L. ;
Hu, F. X. ;
Wang, J. ;
Bao, L. F. ;
Sun, J. R. ;
Shen, B. G. ;
Yin, J. H. ;
Pan, L. Q. .
APPLIED PHYSICS LETTERS, 2012, 101 (01)
[5]   Magnetic properties and structural transformations in Ni-Co-Mn-Sn multifunctional alloys [J].
Cong, D. Y. ;
Roth, S. ;
Schultz, L. .
ACTA MATERIALIA, 2012, 60 (13-14) :5335-5351
[6]   Phase diagram and composition optimization for magnetic shape memory effect in Ni-Co-Mn-Sn alloys [J].
Cong, D. Y. ;
Roth, S. ;
Poetschke, M. ;
Huerrich, C. ;
Schultz, L. .
APPLIED PHYSICS LETTERS, 2010, 97 (02)
[7]   Effect of Co and Cu substitution on the magnetic entropy change in Ni46Mn43Sn11 alloy [J].
Das, Rahul ;
Sarma, S. ;
Perumal, A. ;
Srinivasan, A. .
JOURNAL OF APPLIED PHYSICS, 2011, 109 (07)
[8]   Magnetoresistance and its relation to magnetization in Ni50Mn35Sn15 shape-memory epitaxial films [J].
Dubowik, J. ;
Zaleski, K. ;
Goscianska, I. ;
Glowinski, H. ;
Ehresmann, A. .
APPLIED PHYSICS LETTERS, 2012, 100 (16)
[9]   Direct measurement of the "giant" adiabatic temperature change in Gd5Si2Ge2 [J].
Giguère, A ;
Foldeaki, M ;
Gopal, BR ;
Chahine, R ;
Bose, TK ;
Frydman, A ;
Barclay, JA .
PHYSICAL REVIEW LETTERS, 1999, 83 (11) :2262-2265
[10]   On the nature of the magnetocaloric effect of the first-order magnetostructural transition [J].
Gschneidner, K. A., Jr. ;
Mudryk, Y. ;
Pecharsky, V. K. .
SCRIPTA MATERIALIA, 2012, 67 (06) :572-577