Facile construction of robust superhydrophobic tea polyphenol/Fe@cotton fabric for self-cleaning and efficient oil-water separation

被引:58
作者
Zhou, Qingqing [1 ]
Chen, Guoqiang [1 ]
Xing, Tieling [1 ]
机构
[1] Soochow Univ, Coll Text & Clothing Engn, Suzhou 215123, Peoples R China
关键词
Cotton fabric; Superhydrophobic; Oil-water separation; Tea polyphenol; Ferrous ion; Environmentally friendly; OIL/WATER SEPARATION; GRAPHENE OXIDE; SURFACE; NANOPARTICLES; ANTIBACTERIAL; LITHOGRAPHY; REDUCTION; TEXTILES; EXTRACTS; COATINGS;
D O I
10.1007/s10570-018-1654-1
中图分类号
TB3 [工程材料学]; TS [轻工业、手工业、生活服务业];
学科分类号
0805 ; 080502 ; 0822 ;
摘要
Superhydrophobic cotton fabrics consisting of tea polyphenol/Fe hybrid coatings on cotton fabrics (TP/Fe@cotton fabrics) were fabricated via a facile, highly efficient, and environmentally friendly method. No fluorinated substances or organic solvents were used in the preparation process that involved only Fe2+, natural substances, and water. The original and modified cotton fabrics were characterized by scanning electron microscopy, atomic force microscopy, and X-ray photoelectron spectroscopy. A coating with a uniform 3D bulge-like form and many closely arranged microparticles was coated onto the surface of the TP/Fe@cotton fabric. Compared to the original cotton fabric, the TP/Fe@cotton fabric showed a higher superhydrophobicity, with a water contact angle of approximately 161A degrees and sliding angle about 15A degrees. The TP/Fe@cotton fabric could withstand 1000 cycles of abrasion without an apparent decrease of the contact angle, and was also stable under a variety of harsh environmental conditions. In addition, the TP/Fe@cotton fabric demonstrated an excellent self-cleaning performance and a highly efficient separation of various oil-water mixtures. Furthermore, its separation performance remained excellent even under harsh conditions or after being reused ten times. This facile, highly efficient, and environmentally friendly preparation method has potential prospects for industrialization, and the superhydrophobic TP/Fe@cotton fabric has potential value in practical applications such as oil-water separation.
引用
收藏
页码:1513 / 1525
页数:13
相关论文
共 43 条
[1]   Increasing the antioxidant activity of green tea polyphenols in the presence of iron for the reduction of graphene oxide [J].
Akhavan, O. ;
Kalaee, M. ;
Alavi, Z. S. ;
Ghiasi, S. M. A. ;
Esfandiar, A. .
CARBON, 2012, 50 (08) :3015-3025
[2]   Resolving surface chemical states in XPS analysis of first row transition metals, oxides and hydroxides: Cr, Mn, Fe, Co and Ni [J].
Biesinger, Mark C. ;
Payne, Brad P. ;
Grosvenor, Andrew P. ;
Lau, Leo W. M. ;
Gerson, Andrea R. ;
Smart, Roger St. C. .
APPLIED SURFACE SCIENCE, 2011, 257 (07) :2717-2730
[3]   Sol-Gel Preparation of Hydrophobic Silica Antireflective Coatings with Low Refractive Index by Base/Acid Two-Step Catalysis [J].
Cai, Shuang ;
Zhang, Yulu ;
Zhang, Hongli ;
Yan, Hongwei ;
Lv, Haibing ;
Jiang, Bo .
ACS APPLIED MATERIALS & INTERFACES, 2014, 6 (14) :11470-11475
[4]   Robust fluorine-free superhydrophobic PDMS-ormosil@fabrics for highly effective self-cleaning and efficient oil-water separation [J].
Cao, Chunyan ;
Ge, Mingzheng ;
Huang, Jianying ;
Li, Shuhui ;
Deng, Shu ;
Zhang, Songnan ;
Chen, Zhong ;
Zhang, Keqin ;
Al-Deyab, Salem S. ;
Lai, Yuekun .
JOURNAL OF MATERIALS CHEMISTRY A, 2016, 4 (31) :12179-12187
[5]   Polyurethane sponge functionalized with superhydrophobic nanodiamond particles for efficient oil/water separation [J].
Cao, Ning ;
Yang, Bai ;
Barras, Alexandre ;
Szunerits, Sabine ;
Boukherroub, Rabah .
CHEMICAL ENGINEERING JOURNAL, 2017, 307 :319-325
[6]   Mussel-Inspired Chemistry and Michael Addition Reaction for Efficient Oil/Water Separation [J].
Cao, Yingze ;
Zhang, Xiaoyong ;
Tao, Lei ;
Li, Kan ;
Xue, Zhongxin ;
Feng, Lin ;
Wei, Yen .
ACS APPLIED MATERIALS & INTERFACES, 2013, 5 (10) :4438-4442
[7]   Highly Flexible Superhydrophobic and Fire-Resistant Layered Inorganic Paper [J].
Chen, Fei-Fei ;
Zhu, Ying-Jie ;
Xiong, Zhi-Chao ;
Sun, Tuan-Wei ;
Shen, Yue-Qin .
ACS APPLIED MATERIALS & INTERFACES, 2016, 8 (50) :34715-34724
[8]   Long-term anticorrosion behaviour of polyaniline on mild steel [J].
Chen, Y. ;
Wang, X. H. ;
Li, J. ;
Lu, J. L. ;
Wang, F. S. .
CORROSION SCIENCE, 2007, 49 (07) :3052-3063
[9]   Magnetic particle-based super-hydrophobic coatings with excellent anti-icing and thermoresponsive deicing performance [J].
Cheng, Tiantian ;
He, Ren ;
Zhang, Qinghua ;
Zhan, Xiaoli ;
Chen, Fengqiu .
JOURNAL OF MATERIALS CHEMISTRY A, 2015, 3 (43) :21637-21646
[10]   Oil/Water Separation with Selective Superantiwetting/Superwetting Surface Materials [J].
Chu, Zonglin ;
Feng, Yujun ;
Seeger, Stefan .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2015, 54 (08) :2328-2338