Machine-learning interatomic potentials enable first-principles multiscale modeling of lattice thermal conductivity in graphene/borophene heterostructures

被引:157
作者
Mortazavi, Bohayra [1 ,2 ]
Podryabinkin, Evgeny, V [3 ]
Roche, Stephan [4 ,5 ,6 ]
Rabczuk, Timon [7 ]
Zhuang, Xiaoying [1 ,7 ]
Shapeev, Alexander, V [3 ]
机构
[1] Leibniz Univ Hannover, Chair Computat Sci & Simulat Technol, Dept Math & Phys, Appelstr 11, D-30157 Hannover, Germany
[2] Leibniz Univ Hannover, Cluster Excellence PhoenixD, Photon Opt & Engn Innovat Disciplines, Hannover, Germany
[3] Skolkovo Innovat Ctr, Skolkovo Inst Sci & Technol, Nobel St 3, Moscow 143026, Russia
[4] CSIC, Catalan Inst Nanosci & Nanotechnol ICN2, Campus UAB, Barcelona 08193, Spain
[5] BIST, Campus UAB, Barcelona 08193, Spain
[6] ICREA Inst Catalan Recerca & Estudis Avancats, Barcelona 08010, Spain
[7] Tongji Univ, Coll Civil Engn, Dept Geotech Engn, Shanghai, Peoples R China
基金
俄罗斯科学基金会;
关键词
TOTAL-ENERGY CALCULATIONS; TRANSPORT; GRAPHENE;
D O I
10.1039/d0mh00787k
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
One of the ultimate goals of computational modeling in condensed matter is to be able to accurately compute materials properties with minimal empirical information. First-principles approaches such as density functional theory (DFT) provide the best possible accuracy on electronic properties but they are limited to systems up to a few hundreds, or at most thousands of atoms. On the other hand, classical molecular dynamics (CMD) simulations and the finite element method (FEM) are extensively employed to study larger and more realistic systems, but conversely depend on empirical information. Here, we show that machine-learning interatomic potentials (MLIPs) trained over shortab initiomolecular dynamics trajectories enable first-principles multiscale modeling, in which DFT simulations can be hierarchically bridged to efficiently simulate macroscopic structures. As a case study, we analyze the lattice thermal conductivity of coplanar graphene/borophene heterostructures, recently synthesized experimentally (Sci. Adv., 2019,5, eaax6444), for which no viable classical modeling alternative is presently available. Our MLIP-based approach can efficiently predict the lattice thermal conductivity of graphene and borophene pristine phases, the thermal conductance of complex graphene/borophene interfaces and subsequently enable the study of effective thermal transport along the heterostructures at continuum level. This work highlights that MLIPs can be effectively and conveniently employed to enable first-principles multiscale modelingviahierarchical employment of DFT/CMD/FEM simulations, thus expanding the capability for computational design of novel nanostructures.
引用
收藏
页码:2359 / 2367
页数:9
相关论文
共 71 条
[1]  
[Anonymous], 2017, Phys. Rev. B
[2]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[3]   Engineering of thermal transport in graphene using grain size, strain, nitrogen and boron doping; a multiscale modeling [J].
Bazrafshan, Saeed ;
Rajabpour, Ali .
INTERNATIONAL JOURNAL OF HEAT AND MASS TRANSFER, 2018, 123 :534-543
[4]   A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons [J].
Brenner, DW ;
Shenderova, OA ;
Harrison, JA ;
Stuart, SJ ;
Ni, B ;
Sinnott, SB .
JOURNAL OF PHYSICS-CONDENSED MATTER, 2002, 14 (04) :783-802
[5]   Thermal Transport in Suspended and Supported Monolayer Graphene Grown by Chemical Vapor Deposition [J].
Cai, Weiwei ;
Moore, Arden L. ;
Zhu, Yanwu ;
Li, Xuesong ;
Chen, Shanshan ;
Shi, Li ;
Ruoff, Rodney S. .
NANO LETTERS, 2010, 10 (05) :1645-1651
[6]   Electrical and Thermal Transport in Coplanar Polycrystalline Graphene-hBN Heterostructures [J].
Eduardo Barrios-Vargas, Jose ;
Mortazavi, Bohayra ;
Cummings, Aron W. ;
Martinez-Gordillo, Rafael ;
Pruneda, Miguel ;
Colombo, Luciano ;
Rabczuk, Timon ;
Roche, Stephan .
NANO LETTERS, 2017, 17 (03) :1660-1664
[7]  
Feng BJ, 2016, NAT CHEM, V8, P564, DOI [10.1038/NCHEM.2491, 10.1038/nchem.2491]
[8]   Thermal Conductivity of Graphene and Graphite: Collective Excitations and Mean Free Paths [J].
Fugallo, Giorgia ;
Cepellotti, Andrea ;
Paulatto, Lorenzo ;
Lazzeri, Michele ;
Marzari, Nicola ;
Mauri, Francesco .
NANO LETTERS, 2014, 14 (11) :6109-6114
[9]   First-principles study of intrinsic phononic thermal transport in monolayer C3N [J].
Gao, Yan ;
Wang, Haifeng ;
Sun, Maozhu ;
Ding, Yingchun ;
Zhang, Lichun ;
Li, Qingfang .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2018, 99 :194-201
[10]   Extremely high thermal conductivity of graphene: Prospects for thermal management applications in nanoelectronic circuits [J].
Ghosh, S. ;
Calizo, I. ;
Teweldebrhan, D. ;
Pokatilov, E. P. ;
Nika, D. L. ;
Balandin, A. A. ;
Bao, W. ;
Miao, F. ;
Lau, C. N. .
APPLIED PHYSICS LETTERS, 2008, 92 (15)