KERNEL MAD ALGORITHM FOR RELATIVE RADIOMETRIC NORMALIZATION

被引:8
作者
Bai, Yang [1 ,2 ]
Tang, Ping [2 ]
Hu, Changmiao [2 ]
机构
[1] Univ Chinese Acad Sci, 19A Yuquan Rd, Beijing, Peoples R China
[2] Chinese Acad Sci, Inst Remote Sensing & Digital Earth, 20 Datun Rd, Beijing, Peoples R China
来源
XXIII ISPRS CONGRESS, COMMISSION I | 2016年 / 3卷 / 01期
关键词
Relative radiometric normalization; multivariate alteration detection (MAD); canonical correlation analysis (CCA); kernel version of canonical correlation analysis (KCCA);
D O I
10.5194/isprsannals-III-1-49-2016
中图分类号
TP7 [遥感技术];
学科分类号
081102 ; 0816 ; 081602 ; 083002 ; 1404 ;
摘要
The multivariate alteration detection (MAD) algorithm is commonly used in relative radiometric normalization. This algorithm is based on linear canonical correlation analysis (CCA) which can analyze only linear relationships among bands. Therefore, we first introduce a new version of MAD in this study based on the established method known as kernel canonical correlation analysis (KCCA). The proposed method effectively extracts the non-linear and complex relationships among variables. We then conduct relative radiometric normalization experiments on both the linear CCA and KCCA version of the MAD algorithm with the use of Landsat-8 data of Beijing, China, and Gaofen-1(GF-1) data derived from South China. Finally, we analyze the difference between the two methods. Results show that the KCCA-based MAD can be satisfactorily applied to relative radiometric normalization, this algorithm can well describe the nonlinear relationship between multi-temporal images. This work is the first attempt to apply a KCCA-based MAD algorithm to relative radiometric normalization.
引用
收藏
页码:49 / 53
页数:5
相关论文
共 9 条
[1]   Automatic radiometric normalization of multitemporal satellite imagery [J].
Canty, MJ ;
Nielsen, AA ;
Schmidt, M .
REMOTE SENSING OF ENVIRONMENT, 2004, 91 (3-4) :441-451
[2]   Automatic radiometric normalization of multitemporal satellite imagery with the iteratively re-weighted MAD transformation [J].
Canty, Morton J. ;
Nielsen, Allan A. .
REMOTE SENSING OF ENVIRONMENT, 2008, 112 (03) :1025-1036
[3]   Linear and kernel methods for multivariate change detection [J].
Canty, Morton J. ;
Nielsen, Allan A. .
COMPUTERS & GEOSCIENCES, 2012, 38 (01) :107-114
[4]   Relations between two sets of variates [J].
Hotelling, H .
BIOMETRIKA, 1936, 28 :321-377
[5]  
Lai P L, 2000, Int J Neural Syst, V10, P365, DOI 10.1016/S0129-0657(00)00034-X
[6]   A change oriented extension of EOF analysis applied to the 1996-1997 AVHRR sea surface temperature data [J].
Nielsen, AA ;
Conradsen, K ;
Andersen, OB .
PHYSICS AND CHEMISTRY OF THE EARTH, 2002, 27 (32-34) :1379-1386
[7]   Multivariate alteration detection (MAD) and MAF postprocessing in multispectral, bitemporal image data: New approaches to change detection studies [J].
Nielsen, AA ;
Conradsen, K ;
Simpson, JJ .
REMOTE SENSING OF ENVIRONMENT, 1998, 64 (01) :1-19
[8]   A KERNEL VERSION OF MULTIVARIATE ALTERATION DETECTION [J].
Nielsen, Allan A. ;
Vestergaard, Jacob S. .
2013 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS), 2013, :3451-3454
[9]   RADIOMETRIC SCENE NORMALIZATION USING PSEUDOINVARIANT FEATURES [J].
SCHOTT, JR ;
SALVAGGIO, C ;
VOLCHOK, WJ .
REMOTE SENSING OF ENVIRONMENT, 1988, 26 (01) :1-&