A NEW CHARACTERIZATION OF COMPLETE LINEAR WEINGARTEN HYPERSURFACES IN REAL SPACE FORMS

被引:23
作者
Aquino, Cicero P. [1 ]
de Lima, Henrique F. [2 ]
Velasquez, Marco A. L. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
space forms; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; Clifford torus; circular cylinder; hyperbolic cylinder; CONSTANT SCALAR CURVATURE; RIEMANNIAN MANIFOLDS; MEAN-CURVATURE;
D O I
10.2140/pjm.2013.261.33
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the Hopf's strong maximum principle in order to obtain a suitable characterization of the complete linear Weingarten hypersurfaces immersed in a real space form Q(c)(n+1) of constant sectional curvature c. Under the assumption that the mean curvature attains its maximum and supposing an appropriated restriction on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a Clifford torus, if c = 1, a circular cylinder, if c = 0, or a hyperbolic cylinder, if c = -1.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [31] On the umbilicity of generalized linear Weingarten spacelike hypersurfaces in a Lorentzian space form
    Aquino, Cicero P.
    Batista, Mamba
    de Lima, Henrique F.
    JOURNAL OF GEOMETRY AND PHYSICS, 2019, 137 : 228 - 236
  • [32] Complete hypersurfaces in a real space form
    Shichang, Shu
    JOURNAL OF MATHEMATICAL PHYSICS ANALYSIS GEOMETRY, 2008, 4 (02) : 294 - 304
  • [33] Rigidity of linear Weingarten hypersurfaces in locally symmetric manifolds
    Alias, Luis J.
    de Lima, Henrique F.
    Melendez, Josue
    dos Santos, Fabio R.
    MATHEMATISCHE NACHRICHTEN, 2016, 289 (11-12) : 1309 - 1324
  • [34] On almost stable linear Weingarten hypersurfaces
    Roth, Julien
    Upadhyay, Abhitosh
    BULLETIN DES SCIENCES MATHEMATIQUES, 2023, 189
  • [35] A NEW GAP FOR COMPLETE HYPERSURFACES WITH CONSTANT MEAN CURVATURE IN SPACE FORMS
    Gu, Juan-Ru
    Lei, Li
    Xu, Hong-Wei
    PACIFIC JOURNAL OF MATHEMATICS, 2022, 318 (01) : 51 - 67
  • [36] Stability and eigenvalue estimates of linear Weingarten hypersurfaces in a sphere
    Chen, Hang
    Wang, Xianfeng
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 397 (02) : 658 - 670
  • [37] CHARACTERIZATIONS OF LINEAR WEINGARTEN SPACELIKE HYPERSURFACES IN EINSTEIN SPACETIMES
    De Lima, Henrique F.
    De Lima, Joseilson R.
    GLASGOW MATHEMATICAL JOURNAL, 2013, 55 (03) : 567 - 579
  • [38] On the umbilicity of generalized linear Weingarten hypersurfaces in hyperbolic spaces
    Aquino, Cicero P.
    Batista, Marcio
    de Lima, Henrique F.
    ADVANCES IN GEOMETRY, 2018, 18 (04) : 425 - 430
  • [39] A NEW CHARACTERIZATION OF r-STABLE HYPERSURFACES IN SPACE FORMS
    de Lima, H. F.
    Velasquez, M. A.
    ARCHIVUM MATHEMATICUM, 2011, 47 (02): : 119 - 131
  • [40] LINEAR WEINGARTEN SUBMANIFOLDS IMMERSED IN A SPACE FORM
    De Lima, Henrique Fernandes
    Dos Santos, Fabio Reis
    Da Silva Araujo, Jogli Gidel
    Lazaro Velasquez, Marco Antonio
    KODAI MATHEMATICAL JOURNAL, 2017, 40 (02) : 214 - 228