A NEW CHARACTERIZATION OF COMPLETE LINEAR WEINGARTEN HYPERSURFACES IN REAL SPACE FORMS

被引:23
|
作者
Aquino, Cicero P. [1 ]
de Lima, Henrique F. [2 ]
Velasquez, Marco A. L. [2 ]
机构
[1] Univ Fed Piaui, Dept Matemat, BR-64049550 Teresina, Piaui, Brazil
[2] Univ Fed Campina Grande, Dept Matemat & Estat, BR-58429970 Campina Grande, Paraiba, Brazil
关键词
space forms; linear Weingarten hypersurfaces; totally umbilical hypersurfaces; Clifford torus; circular cylinder; hyperbolic cylinder; CONSTANT SCALAR CURVATURE; RIEMANNIAN MANIFOLDS; MEAN-CURVATURE;
D O I
10.2140/pjm.2013.261.33
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We apply the Hopf's strong maximum principle in order to obtain a suitable characterization of the complete linear Weingarten hypersurfaces immersed in a real space form Q(c)(n+1) of constant sectional curvature c. Under the assumption that the mean curvature attains its maximum and supposing an appropriated restriction on the norm of the traceless part of the second fundamental form, we prove that such a hypersurface must be either totally umbilical or isometric to a Clifford torus, if c = 1, a circular cylinder, if c = 0, or a hyperbolic cylinder, if c = -1.
引用
收藏
页码:33 / 43
页数:11
相关论文
共 50 条
  • [1] Complete linear Weingarten hypersurfaces immersed in the hyperbolic space
    de Lima, Henrique Fernandes
    JOURNAL OF THE MATHEMATICAL SOCIETY OF JAPAN, 2014, 66 (02) : 415 - 423
  • [2] LINEAR WEINGARTEN HYPERSURFACES IN RIEMANNIAN SPACE FORMS
    Chao, Xiaoli
    Wang, Peijun
    BULLETIN OF THE KOREAN MATHEMATICAL SOCIETY, 2014, 51 (02) : 567 - 577
  • [3] Generalized Maximum Principles and the Characterization of Linear Weingarten Hypersurfaces in Space Forms
    Aquino, Cicero P.
    de Lima, Henrique F.
    Velasquez, Marco Antonio L.
    MICHIGAN MATHEMATICAL JOURNAL, 2014, 63 (01) : 27 - 40
  • [4] LINEAR WEINGARTEN HYPERSURFACES IN A REAL SPACE FORM
    Shu, Shichang
    GLASGOW MATHEMATICAL JOURNAL, 2010, 52 : 635 - 648
  • [5] Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space
    de Lima, Henrique F.
    de Lima, Joseilson R.
    RESULTS IN MATHEMATICS, 2013, 63 (3-4) : 865 - 876
  • [6] On the geometry of linear Weingarten hypersurfaces in the hyperbolic space
    Aquino, Cicero P.
    de Lima, Henrique F.
    MONATSHEFTE FUR MATHEMATIK, 2013, 171 (3-4): : 259 - 268
  • [7] On the geometry of linear Weingarten spacelike hypersurfaces in the de Sitter space
    de Lima, Henrique F.
    Velasquez, Marco A. L.
    BULLETIN OF THE BRAZILIAN MATHEMATICAL SOCIETY, 2013, 44 (01): : 49 - 65
  • [8] On the complete linear Weingarten spacelike hypersurfaces with two distinct principal curvatures in Lorentzian space forms
    Gomes, Jose N.
    de Lima, Henrique F.
    dos Santos, Fabio R.
    Velasquez, Marco Antonio L.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2014, 418 (01) : 248 - 263
  • [9] NEW CHARACTERIZATIONS OF LINEAR WEINGARTEN HYPERSURFACES IMMERSED IN THE HYPERBOLIC SPACE
    Aquino, Cicero P.
    de Lima, Henrique F.
    ARCHIVUM MATHEMATICUM, 2015, 51 (04): : 201 - 209
  • [10] Complete Linear Weingarten Spacelike Hypersurfaces Immersed in a Locally Symmetric Lorentz Space
    Henrique F. de Lima
    Joseílson R. de Lima
    Results in Mathematics, 2013, 63 : 865 - 876