LIFT: Learned Invariant Feature Transform

被引:888
作者
Yi, Kwang Moo [1 ]
Trulls, Eduard [1 ]
Lepetit, Vincent [2 ]
Fua, Pascal [1 ]
机构
[1] Ecole Polytech Fed Lausanne, Comp Vis Lab, Lausanne, Switzerland
[2] Graz Univ Technol, Inst Comp Graph & Vis, Graz, Austria
来源
COMPUTER VISION - ECCV 2016, PT VI | 2016年 / 9910卷
关键词
Local features; Feature descriptors; Deep Learning; PERFORMANCE; SCALE;
D O I
10.1007/978-3-319-46466-4_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We introduce a novel Deep Network architecture that implements the full feature point handling pipeline, that is, detection, orientation estimation, and feature description. While previous works have successfully tackled each one of these problems individually, we show how to learn to do all three in a unified manner while preserving end-to-end differentiability. We then demonstrate that our Deep pipeline outperforms state-of-the-art methods on a number of benchmark datasets, without the need of retraining.
引用
收藏
页码:467 / 483
页数:17
相关论文
共 45 条
[1]   A Comparative Study of Interest Point Performance on a Unique Data Set [J].
Aanaes, Henrik ;
Dahl, Anders Lindbjerg ;
Pedersen, Kim Steenstrup .
INTERNATIONAL JOURNAL OF COMPUTER VISION, 2012, 97 (01) :18-35
[2]  
Alahi A., 2012, CVPR
[3]   KAZE Features [J].
Alcantarilla, Pablo Fernandez ;
Bartoli, Adrien ;
Davison, Andrew J. .
COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 :214-227
[4]  
[Anonymous], 2008, CVPR
[5]  
[Anonymous], 2015, P 28 INT C NEUR INF
[6]  
[Anonymous], 2011, ICCV
[7]  
[Anonymous], 2015, CVPR
[8]  
[Anonymous], 2012, ICPR
[9]  
[Anonymous], 2015, CVPR
[10]  
[Anonymous], 2013, 3DV