Bayesian Latent Class Models in Malaria Diagnosis

被引:34
作者
Goncalves, Luzia [1 ,2 ]
Subtil, Ana [3 ,4 ]
Rosario de Oliveira, M. [3 ,4 ]
do Rosario, Virgilio [5 ,6 ]
Lee, Pei-Wen [7 ]
Shaio, Men-Fang [8 ]
机构
[1] Univ Nova Lisboa, Inst Higiene & Med Trop, CEAUL, P-1200 Lisbon, Portugal
[2] Univ Nova Lisboa, Inst Higiene & Med Trop, Unidade Saude Publ Int & Bioestat, P-1200 Lisbon, Portugal
[3] Univ Tecn Lisboa, Inst Super Tecn, CEMAT, P-1096 Lisbon, Portugal
[4] Univ Tecn Lisboa, Inst Super Tecn, Dept Matemat, P-1096 Lisbon, Portugal
[5] Univ Nova Lisboa, Inst Higiene & Med Trop, CMDT LA, P-1200 Lisbon, Portugal
[6] Univ Nova Lisboa, Inst Higiene & Med Trop, Unidade Parasitol Med, P-1200 Lisbon, Portugal
[7] HungKuang Univ, Inst Biomed Nutr, Taichung, Taiwan
[8] Natl Yang Ming Univ, Dept Trop Med, Taipei 112, Taiwan
关键词
LABORATORY COMPARATIVE-EVALUATION; PLASMODIUM-FALCIPARUM MALARIA; MONTE-CARLO METHODS; TOME-AND-PRINCIPE; CONDITIONAL DEPENDENCE; CONFIDENCE-INTERVALS; BINOMIAL PROPORTION; FIELD-EVALUATION; TESTS; ACCURACY;
D O I
10.1371/journal.pone.0040633
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Aims: The main focus of this study is to illustrate the importance of the statistical analysis in the evaluation of the accuracy of malaria diagnostic tests, without admitting a reference test, exploring a dataset (n = 3317) collected in Sao Tome and Principe. Methods: Bayesian Latent Class Models (without and with constraints) are used to estimate the malaria infection prevalence, together with sensitivities, specificities, and predictive values of three diagnostic tests (RDT, Microscopy and PCR), in four subpopulations simultaneously based on a stratified analysis by age groups (<5, >= 5 years old) and fever status (febrile, afebrile). Results: In the afebrile individuals with at least five years old, the posterior mean of the malaria infection prevalence is 3.2% with a highest posterior density interval of [2.3-4.1]. The other three subpopulations (febrile >= 5 years, afebrile or febrile children less than 5 years) present a higher prevalence around 10.3% [8.8-11.7]. In afebrile children under-five years old, the sensitivity of microscopy is 50.5% [37.7-63.2]. In children under-five, the estimated sensitivities/specificities of RDT are 95.4% [90.3-99.5]/93.8% [91.6-96.0] - afebrile - and 94.1% [87.5-99.4]/97.5% [95.5-99.3] - febrile. In individuals with at least five years old are 96.0% [91.5-99.7]/98.7% [98.1-99.2] - afebrile - and 97.9% [95.3-99.8]/97.7% [96.6-98.6] - febrile. The PCR yields the most reliable results in four subpopulations. Conclusions: The utility of this RDT in the field seems to be relevant. However, in all subpopulations, data provide enough evidence to suggest caution with the positive predictive values of the RDT. Microscopy has poor sensitivity compared to the other tests, particularly, in the afebrile children less than 5 years. This type of findings reveals the danger of statistical analysis based on microscopy as a reference test. Bayesian Latent Class Models provide a powerful tool to evaluate malaria diagnostic tests, taking into account different groups of interest.
引用
收藏
页数:13
相关论文
共 81 条
[1]   A cautionary note on the robustness of latent class models for estimating diagnostic error without a gold standard [J].
Albert, PS ;
Dodd, LE .
BIOMETRICS, 2004, 60 (02) :427-435
[2]  
Alonzo TA, 1999, STAT MED, V18, P2987, DOI 10.1002/(SICI)1097-0258(19991130)18:22<2987::AID-SIM205>3.0.CO
[3]  
2-B
[4]  
Altman D., 2000, STAT CONFIDENCE CONF
[5]  
[Anonymous], 2003, Bayesian Data Analysis
[6]  
[Anonymous], R LANG ENV STAT COMP
[7]  
[Anonymous], 2018, Epitools Epidemiological Calculators
[8]   Are rapid diagnostic tests more accurate in diagnosis of plasmodium falciparum malaria compared to microscopy at rural health centres? [J].
Batwala, Vincent ;
Magnussen, Pascal ;
Nuwaha, Fred .
MALARIA JOURNAL, 2010, 9
[9]  
Bell D, 2006, NAT REV MICROBIOL, pS7, DOI [10.1038/nrmico1525, 10.1038/nrmicro1525]
[10]   Field evaluation of a rapid diagnostic test (Parascreen™) for malaria diagnosis in the Peruvian Amazon [J].
Bendezu, Jorge ;
Rosas, Angel ;
Grande, Tanilu ;
Rodriguez, Hugo ;
Llanos-Cuentas, Alejandro ;
Escobedo, Jorge ;
Gamboa, Dionicia .
MALARIA JOURNAL, 2010, 9