On fixed points of permutations

被引:24
作者
Diaconis, Persi [2 ]
Fulman, Jason [1 ]
Guralnick, Robert [1 ]
机构
[1] Univ So Calif, Dept Math, Los Angeles, CA 90089 USA
[2] Stanford Univ, Dept Math & Stat, Stanford, CA 94305 USA
基金
美国国家科学基金会;
关键词
fixed point; derangement; primitive action; O'Nan-Scott theorem;
D O I
10.1007/s10801-008-0135-2
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The number of fixed points of a random permutation of {1, 2, ..., n} has a limiting Poisson distribution. We seek a generalization, looking at other actions of the symmetric group. Restricting attention to primitive actions, a complete classification of the limiting distributions is given. For most examples, they are trivial - almost every permutation has no fixed points. For the usual action of the symmetric group on k-sets of {1, 2, ..., n}, the limit is a polynomial in independent Poisson variables. This exhausts all cases. We obtain asymptotic estimates in some examples, and give a survey of related results.
引用
收藏
页码:189 / 218
页数:30
相关论文
共 68 条
[1]  
[Anonymous], 1989, APPL MATH SCI
[2]  
[Anonymous], 1988, LECT NOTES MONOGR SE
[3]  
[Anonymous], 1992, Combinatorics, Probability Computing
[4]  
[Anonymous], 2004, THEORY FINITE GROUPS, DOI DOI 10.1007/B97433
[5]   THE CYCLE STRUCTURE OF RANDOM PERMUTATIONS [J].
ARRATIA, R ;
TAVARE, S .
ANNALS OF PROBABILITY, 1992, 20 (03) :1567-1591
[6]   MAXIMAL-SUBGROUPS OF FINITE-GROUPS [J].
ASCHBACHER, M ;
SCOTT, L .
JOURNAL OF ALGEBRA, 1985, 92 (01) :44-80
[7]   ON THE MAXIMAL-SUBGROUPS OF THE FINITE CLASSICAL-GROUPS [J].
ASCHBACHER, M .
INVENTIONES MATHEMATICAE, 1984, 76 (03) :469-514
[8]  
Aschbacher M., 2000, FINITE GROUP THEORY, V10
[9]   ON THE ORDER OF UNIPRIMITIVE PERMUTATION-GROUPS [J].
BABAI, L .
ANNALS OF MATHEMATICS, 1981, 113 (03) :553-568
[10]  
BARBOUR A, 1992, OXFORD SCI PUBLICATI