Progress and perspective on drought and salt stress tolerance in cotton

被引:229
|
作者
Abdelraheem, Abdelraheem [1 ]
Esmaeili, Nardana [2 ]
O'Connell, Mary [1 ]
Zhang, Jinfa [1 ]
机构
[1] New Mexico State Univ, Dept Plant & Environm Sci, Las Cruces, NM 88003 USA
[2] Texas Tech Univ, Dept Biol Sci, Lubbock, TX 79409 USA
关键词
Cotton; Gossypium hirsutum; Gossypium barbadense; Drought tolerance; Salt tolerance; Review; GOSSYPIUM-HIRSUTUM-L; CARBON-ISOTOPE DISCRIMINATION; INBRED LINE POPULATION; INCREASES FIBER YIELD; WATER-USE EFFICIENCY; UPLAND COTTON; ENHANCES DROUGHT; STOMATAL CONDUCTANCE; TRANSCRIPTION FACTOR; IMPROVES DROUGHT;
D O I
10.1016/j.indcrop.2018.12.070
中图分类号
S2 [农业工程];
学科分类号
0828 ;
摘要
Drought stress, caused by lack of precipitation or irrigation, is one of the most challenging problems in crop production in the US and worldwide. Drought alone affects 45% of the world's agricultural land, further, 19.5% of irrigated agricultural lands are considered saline. A combination of two or more abiotic stresses, such as drought and salinity results in more yield loss than a single stress. Drought along with salinization is expected to cause up to 50% of arable land loss worldwide. Development of drought and/or salt stress tolerant cultivars represents one of the most practical solutions. Genetic variation in abiotic stress tolerance exists within Upland cotton (Gossypium hirsutwn L.); however, most if not all Upland cultivars have been developed under normal well-watered and non-saline conditions. Pima, Sea-Island or Egyptian cotton (G. barbadense L), carries some level of tolerance to abioitc stresses due to their origin near sea-coasts, and this tolerance can be transferred to Upland cotton by interspecific introgression. Although drought and salt stress tolerances are presumed to be interconnected, the genetic basis is not fully understood due to complexity of the stress resistance and difficulties in phenotyping. The objective of this review was to summarize the progress in screening methodology, resistance germplasm sources, inheritance, biochemical and molecular aspects, transgenic approaches, and quantitative trait loci (QTL) for drought and salt stress tolerance in cotton. In the last 10-15 years, significant progress has been made in understanding the genetic basis of drought and salt tolerance through QTL mapping using molecular markers on biparental and multi-parental populations and natural populations. Numerous drought or salt responsive genes have been identified, some of which include those commonly associated with drought or salt tolerance in other plants and are used in transgenic approaches for enhancement of abiotic stress tolerance. However, none of these genes have been utilized in commercial cotton breeding programs, and no abiotic stress tolerance QTL has been used in cotton breeding through marker-assisted selection (MAS). More and larger permanent intra-specific and interspecific mapping populations using diverse and multiple parents should be developed. These populations are necessary for repeated phenotyping for abiotic stress tolerance and for high resolution mapping of QTL using genome-wide SNP markers and for MAS to transfer tolerance genes to high-yielding cultivars. Further, quick, reliable and high throughput screening methods applicable for large scale populations need to be developed to improve the reliability and scale of phenotyping of the cotton germplasm in these populations for drought and salt stress tolerance.
引用
收藏
页码:118 / 129
页数:12
相关论文
共 50 条
  • [1] Insights into Drought Stress Signaling in Plants and the Molecular Genetic Basis of Cotton Drought Tolerance
    Mahmood, Tahir
    Khalid, Shiguftah
    Abdullah, Muhammad
    Ahmed, Zubair
    Shah, Muhammad Kausar Nawaz
    Ghafoor, Abdul
    Du, Xiongming
    CELLS, 2020, 9 (01)
  • [2] Regulatory Network of Cotton Genes in Response to Salt, Drought and Wilt Diseases (Verticillium and Fusarium): Progress and Perspective
    Billah, Masum
    Li, Fuguang
    Yang, Zhaoen
    FRONTIERS IN PLANT SCIENCE, 2021, 12
  • [3] An overview of salinity stress, mechanism of salinity tolerance and strategies for its management in cotton
    Maryum, Zahra
    Luqman, Tahira
    Nadeem, Sahar
    Khan, Sana Muhy Ud Din
    Wang, Baohua
    Ditta, Allah
    Khan, Muhammad Kashif Riaz
    FRONTIERS IN PLANT SCIENCE, 2022, 13
  • [4] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [5] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23
  • [6] Quantitative trait locus mapping of drought and salt tolerance in an introgressed recombinant inbred line population of Upland cotton under the greenhouse and field conditions
    Abdelraheem, Abdelraheem
    Fang, David D.
    Zhang, Jinfa
    EUPHYTICA, 2018, 214 (01)
  • [7] Co-overexpression of AVP1 and AtNHX1 in Cotton Further Improves Drought and Salt Tolerance in Transgenic Cotton Plants
    Shen, Guoxin
    Wei, Jia
    Qiu, Xiaoyun
    Hu, Rongbin
    Kuppu, Sundaram
    Auld, Dick
    Blumwald, Eduardo
    Gaxiola, Roberto
    Payton, Paxton
    Zhang, Hong
    PLANT MOLECULAR BIOLOGY REPORTER, 2015, 33 (02) : 167 - 177
  • [8] Research Progress and Perspective on Drought Stress in Legumes: A Review
    Nadeem, Muhammad
    Li, Jiajia
    Yahya, Muhammad
    Sher, Alam
    Ma, Chuanxi
    Wang, Xiaobo
    Qiu, Lijuan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2019, 20 (10)
  • [9] Molecular and Physio-Biochemical Characterization of Cotton Species for Assessing Drought Stress Tolerance
    Mosfeq-Ul Hasan, Md
    Ma, Fanglu
    Prodhan, Zakaria Hossain
    Li, Feng
    Shen, Hao
    Chen, Yadong
    Wang, Xuede
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2018, 19 (09)
  • [10] Genetic improvement of cotton tolerance to salinity stress
    Ma, Xinrong
    Dong, Hezhong
    Li, Weijiang
    AFRICAN JOURNAL OF AGRICULTURAL RESEARCH, 2011, 6 (33): : 6798 - 6803