Microstructure of nanocrystalline yttria-doped zirconia thin films obtained by sol-gel processing

被引:21
作者
Butz, Benjamin [1 ]
Stoermer, Heike [1 ]
Gerthsen, Dagmar [1 ]
Bockmeyer, Matthias [2 ]
Krueger, Reinhard [2 ]
Ivers-Tiffee, Ellen [3 ]
Luysberg, Martina [4 ]
机构
[1] Univ Karlsruhe TH, Lab Elektronenmikroskopie, D-76128 Karlsruhe, Germany
[2] Fraunhofer Inst Silicatforsch ISC, D-97082 Wurzburg, Germany
[3] Univ Karlsruhe TH, Inst Werkstoffe Elektrotech, D-76128 Karlsruhe, Germany
[4] Forschungszentrum Julich, Ernst Ruska Ctr Mikroskopie & Spekt Elekt, D-52425 Julich, Germany
关键词
D O I
10.1111/j.1551-2916.2008.02400.x
中图分类号
TQ174 [陶瓷工业]; TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
Nano- and microcrystalline yttria-stabilized zirconia (YSZ) thin films with a dopant concentration of 8.3 +/- 0.3 mol% Y2O3 were prepared with a variation in grain size by two orders of magnitude. A sol-gel-based method with consecutive rapid thermal annealing was applied to fabricate YSZ films, resulting in about 400 nm YSZ on sapphire substrates. The average grain sizes were varied between 5 nm and 0.5 mu m by heat treatment in the temperature range of 650 degrees-1350 degrees C for 24 h. High-resolution (HRTEM) and conventional transmission electron microscopy analyses confirmed specimens-irrespective of the thermal treatment-consisting of cubic (c-)ZrO2 grains with nanoscaled tetragonal precipitates coherently embedded in the cubic matrix. Energy-dispersive X-ray spectroscopy and HRTEM on a large number of specimens yielded a homogeneous yttria concentration within the grains and at the grain boundaries with the absence of impurities, i.e. silica at the grain boundaries.
引用
收藏
页码:2281 / 2289
页数:9
相关论文
共 60 条
[1]   Solute segregation and grain-boundary impedance in high-purity stabilized zirconia [J].
Aoki, M ;
Chiang, YM ;
Kosacki, I ;
Lee, IJR ;
Tuller, H ;
Liu, YP .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1996, 79 (05) :1169-1180
[2]   Yttria-doped zirconia thin films deposited by atomic layer deposition ALD:: a structural, morphological and electrical characterisation [J].
Bernay, C ;
Ringuedé, A ;
Colomban, P ;
Lincot, D ;
Cassir, M .
JOURNAL OF PHYSICS AND CHEMISTRY OF SOLIDS, 2003, 64 (9-10) :1761-1770
[3]   Correlation between microstructure and degradation in conductivity for cubic Y2O3-doped ZrO2 [J].
Butz, B. ;
Kruse, P. ;
Stoermer, H. ;
Gerthsen, D. ;
Mueller, A. ;
Weber, A. ;
Ivers-Tiffee, E. .
SOLID STATE IONICS, 2006, 177 (37-38) :3275-3284
[4]   MICROSTRUCTURAL EVOLUTION IN A ZRO2-12 WT-PERCENT Y2O3 CERAMIC [J].
CHAIM, R ;
RUHLE, M ;
HEUER, AH .
JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1985, 68 (08) :427-431
[5]   Preparation of thin film SOFCs working at reduced temperature [J].
Charpentier, P ;
Fragnaud, P ;
Schleich, DM ;
Gehain, E .
SOLID STATE IONICS, 2000, 135 (1-4) :373-380
[6]   Thermodynamic modeling of the ZrO2-YO1.5 system [J].
Chen, M ;
Hallstedt, B ;
Gauckler, LJ .
SOLID STATE IONICS, 2004, 170 (3-4) :255-274
[7]   Processing and characterization of ultra-thin yttria-stabilized zirconia (YSZ) electrolytic films for SOFC [J].
Chen, YY ;
Wei, WCJ .
SOLID STATE IONICS, 2006, 177 (3-4) :351-357
[8]   Metal-organic vapor deposition of YSZ electrolyte layers for solid oxide fuel cell applications [J].
Chour, KW ;
Chen, J ;
Xu, R .
THIN SOLID FILMS, 1997, 304 (1-2) :106-112
[9]  
Degtyarev S. A., 1987, Russian Journal of Physical Chemistry, V61, P317
[10]   SOLUTION OF ILL-POSED PROBLEMS IN THERMODYNAMICS OF PHASE-EQUILIBRIA - THE ZRO2-Y2O3 SYSTEM [J].
DEGTYAREV, SA ;
VORONIN, GF .
CALPHAD-COMPUTER COUPLING OF PHASE DIAGRAMS AND THERMOCHEMISTRY, 1988, 12 (01) :73-82