Low-loss ultra-wideband beam switching metasurface antenna in X-band

被引:9
作者
Swain, Rajanikanta [1 ]
Naik, Deepak Kumar [1 ]
Panda, Asit Kumar [2 ]
机构
[1] Berhampur Univ, Dept Elect Sci, Berhampur, Odisha, India
[2] NIST, Dept Elect & Commun Engn, Berhampur, Odisha, India
关键词
microwave antenna arrays; antenna feeds; aperture-coupled antennas; antenna radiation patterns; ultra wideband antennas; slot antenna arrays; coplanar waveguide components; microwave metamaterials; metamaterial antennas; 2 pi transmission phase variation; Pancharatnam-Berry metasurface; offset metasurface superstrate; UWB antenna; CP band; broadside beam; low-loss ultra-wideband beam switching metasurface antenna; ultra-wideband metasurface-based beam-switching antenna system; coplanar waveguide fed slot antenna; hexagonal metallic aperture; CP beam; octagonal split ring inclusion-based meta-element; X-band UWB aperture coupled antenna system; next generation vehicular communication; satellite communication; frequency; 10; 2 GHz to 10; 8; GHz; DESIGN; TRANSMITARRAY;
D O I
10.1049/iet-map.2019.0994
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This study proposes an ultra-wideband (UWB) metasurface-based beam-switching antenna system. A coplanar (CP) waveguide fed slot antenna (with 49% operating bandwidth) is coupled with a hexagonal metallic aperture to generate CP beam in the 10.2-10.8 GHz band. An octagonal split ring inclusion-based meta-element is designed to achieve 2 pi transmission phase variation with near-unity magnitude. The principle of the Pancharatnam-Berry metasurface is used to design an offset metasurface superstrate for tilting the main beam of the UWB antenna for the CP band. Measured results (S-11, axial ratio, and radiation pattern) agree well with full-wave simulations. The fabricated X-band UWB aperture coupled antenna system uses the metasurface superstrate to achieve a broadside beam for the lower band and tilted beam for the upper band. This antenna system holds promise for next-generation vehicular and satellite communication applications.
引用
收藏
页码:1216 / 1221
页数:6
相关论文
共 22 条
[1]   Steering the Beam of Medium-to-High Gain Antennas Using Near-Field Phase Transformation [J].
Afzal, Muhammad U. ;
Esselle, Karu P. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2017, 65 (04) :1680-1690
[2]   DESIGN OF SUBWAVELENGTH TUNABLE AND STEERABLE FABRY-PEROT/LEAKY WAVE ANTENNAS [J].
Costa, F. ;
Monorchio, A. .
PROGRESS IN ELECTROMAGNETICS RESEARCH-PIER, 2011, 111 :467-481
[3]  
DeLuca Sr A.J.E.G., 1994, United States, Patent No. [US5339086A, 5339086]
[4]   A True Metasurface Antenna [J].
El Badawe, Mohamed ;
Almoneef, Thamer S. ;
Ramahi, Omar M. .
SCIENTIFIC REPORTS, 2016, 6
[5]   Wave-front Transformation with Gradient Metasurfaces [J].
Estakhri, Nasim Mohammadi ;
Alu, Andrea .
PHYSICAL REVIEW X, 2016, 6 (04)
[6]   Mechanical beam scanning reflectarray [J].
Fusco, VF .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2005, 53 (11) :3842-3844
[7]   Using Rotatable Planar Phase Shifting Surfaces to Steer a High-Gain Beam [J].
Gagnon, Nicolas ;
Petosa, Aldo .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2013, 61 (06) :3086-3092
[8]   High Beam Steering in Fabry-Perot Leaky-Wave Antennas [J].
Ghasemi, Amirhossein ;
Burokur, Shah Nawaz ;
Dhouibi, Abdallah ;
de Lustrac, Andre .
IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2013, 12 :261-264
[9]   A Fabry-Perot Antenna With Two-Dimensional Electronic Beam Scanning [J].
Guzman-Quiros, R. ;
Weily, A. R. ;
Gomez-Tornero, J. L. ;
Guo, Y. J. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2016, 64 (04) :1536-1541
[10]   Design of Compact Beam-Steering Antennas Using a Metasurface Formed by Uniform Square Rings [J].
Hongnara, Tanan ;
Chaimool, Sarawuth ;
Akkaraekthalin, Prayoot ;
Zhao, Yan .
IEEE ACCESS, 2018, 6 :9420-9429