FMPN: Fusing Multiple Progressive CNNs for Depth Map Super-Resolution

被引:0
作者
Li, Shuaihao [1 ,2 ]
Zhang, Bin [3 ]
Zhu, Weiping [4 ]
Yang, Xinfeng [4 ]
机构
[1] Sichuan Int Studies Univ, Res Ctr Int Business & Econ, Chongqing 400031, Peoples R China
[2] Sichuan Int Studies Univ, Int Business Sch, Chongqing 400031, Peoples R China
[3] City Univ Hong Kong, Dept Comp Sci, Hong Kong 999077, Peoples R China
[4] Wuhan Univ, Sch Comp Sci, Wuhan 430072, Peoples R China
关键词
Neural networks; Convolution; Spatial resolution; Training; Mathematical model; Fuses; Depth map super-resolution; progressive convolution neural network; partial differential equation; fusion network; ENHANCEMENT;
D O I
10.1109/ACCESS.2020.3024650
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The Convolution Neural Network (CNN) is widely used in the super-resolution task of depth map. However, the ones with simple architecture and high efficiency generally lack accuracy, while the ones with high accuracy demonstrate low efficiency and training difficulties due to their over-deep level and complex architecture. We propose a depth map super-resolution fusion framework. This framework fuses multiple Progressive Convolution Neural Networks (PCNNs) with different architectures by a pixel-wise Partial Differential Equation (PDE). Each individual PCNN uses progressive learning and deep supervising to construct a mapping from low resolution space to high resolution space. The PDE model automatically classifies and processes the high-resolution depth maps with different feature output by fusing multiple PCNNs. The fusion term in PDE is used to preserve or integrate the complementary features of the depth maps, and the divergence term in PDE is used to remove noise to improve the spatial accuracy and visual effect of the final output depth map. This method enables simple structured Neural Networks with high accuracy, high efficiency and relatively simple network training for depth map super-resolution.
引用
收藏
页码:170754 / 170768
页数:15
相关论文
共 41 条
[1]  
[Anonymous], 2012, ADADELTA ADAPTIVE LE
[2]   A database and evaluation methodology for optical flow [J].
Baker, Simon ;
Scharstein, Daniel ;
Lewis, J. P. ;
Roth, Stefan ;
Black, Michael J. ;
Szeliski, Richard .
2007 IEEE 11TH INTERNATIONAL CONFERENCE ON COMPUTER VISION, VOLS 1-6, 2007, :588-595
[3]   The Fast Bilateral Solver [J].
Barron, Jonathan T. ;
Poole, Ben .
COMPUTER VISION - ECCV 2016, PT III, 2016, 9907 :617-632
[4]   Superresolution and noise filtering using moving least squares [J].
Bose, N. K. ;
Ahuja, Nilesh A. .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2006, 15 (08) :2239-2248
[5]   Algorithm 887: CHOLMOD, Supernodal Sparse Cholesky Factorization and Update/Downdate [J].
Chen, Yanqing ;
Davis, Timothy A. ;
Hager, William W. ;
Rajamanickam, Sivasankaran .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 2008, 35 (03)
[6]   Learning a Deep Convolutional Network for Image Super-Resolution [J].
Dong, Chao ;
Loy, Chen Change ;
He, Kaiming ;
Tang, Xiaoou .
COMPUTER VISION - ECCV 2014, PT IV, 2014, 8692 :184-199
[7]   Variational Depth Superresolution using Example-Based Edge Representations [J].
Ferstl, David ;
Ruether, Matthias ;
Bischof, Horst .
2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, :513-521
[8]   Image Guided Depth Upsampling using Anisotropic Total Generalized Variation [J].
Ferstl, David ;
Reinbacher, Christian ;
Ranftl, Rene ;
Ruether, Matthias ;
Bischof, Horst .
2013 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2013, :993-1000
[9]   Lock-in Time-of-Flight (ToF) Cameras: A Survey [J].
Foix, Sergi ;
Alenya, Guillem ;
Torras, Carme .
IEEE SENSORS JOURNAL, 2011, 11 (09) :1917-1926
[10]   Unified multi-lateral filter for real-time depth map enhancement [J].
Garcia, Frederic ;
Aouada, Djamila ;
Mirbach, Bruno ;
Solignac, Thomas ;
Ottersten, Bjoern .
IMAGE AND VISION COMPUTING, 2015, 41 :26-41