Global solution to a three-dimensional spherical piston problem for the relativistic Euler equations

被引:3
作者
Lai, Geng [1 ]
机构
[1] Shanghai Univ, Dept Math, Shanghai 200444, Peoples R China
关键词
Relativistic Euler equations; spherical piston problem; shock wave; characteristic; CONIC SHOCK-WAVE; CONSERVATION-LAWS; RIEMANN SOLUTIONS; ENTROPY SOLUTIONS; EXISTENCE; STABILITY;
D O I
10.1017/S0956792520000315
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The study of spherically symmetric motion is important for the theory of explosion waves. In this paper, we consider a 'spherical piston' problem for the relativistic Euler equations, which describes the wave motion produced by a sphere expanding into an infinite surrounding medium. We use the reflected characteristics method to construct a global piecewise smooth solution with a single shock of this spherical piston problem, provided that the speed of the sphere is a small perturbation of a constant speed.
引用
收藏
页码:1 / 26
页数:26
相关论文
共 50 条
[31]   Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations [J].
Ding, Min ;
Li, Yachun .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2017, 68 (02)
[32]   Stability and non-relativistic limits of rarefaction wave to the 1-D piston problem for the relativistic Euler equations [J].
Min Ding ;
Yachun Li .
Zeitschrift für angewandte Mathematik und Physik, 2017, 68
[33]   Regularity of Euler equations for a class of three-dimensional initial data [J].
Mahalov, A ;
Nicolaenko, B ;
Bardos, C ;
Golse, F .
Trends in Partial Differential Equations of Mathematical Physics, 2005, 61 :161-185
[34]   THREE-DIMENSIONAL GLOBAL SUPERSONIC EULER FLOWS IN THE INFINITELY LONG DIVERGENT NOZZLES [J].
Xu, Gang ;
Yin, Huicheng .
SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2021, 53 (01) :133-180
[35]   Existence and stability of rarefaction wave to 1-D piston problem for the relativistic full Euler equations [J].
Ding, Min .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) :6068-6108
[36]   Global solution to the Cauchy problem for nonlinear three-dimensional thermoelasticity of nonsimple materials [J].
Lazuka, Jaroslaw .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2024, 75
[37]   Global Entropy Solutions and Newtonian Limit for the Relativistic Euler Equations [J].
Gui-Qiang G. Chen ;
Matthew R. I. Schrecker .
Annals of PDE, 2022, 8
[38]   Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations [J].
Li, Yachun ;
Geng, Yongcai .
ZEITSCHRIFT FUR ANGEWANDTE MATHEMATIK UND PHYSIK, 2006, 57 (06) :960-983
[39]   Non-relativistic global limits of entropy solutions to the isentropic relativistic Euler equations [J].
Yachun Li ;
Yongcai Geng .
Zeitschrift für angewandte Mathematik und Physik ZAMP, 2006, 57 :960-983
[40]   The free piston problem for pressureless Euler equations under the gravity [J].
Wei, Zhijian ;
Guo, Lihui .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2024, 534 (02)