Propagating interfaces in a two-layer bistable neural network

被引:1
|
作者
Kazantsev, V. B.
Nekorkin, V. I.
Morfu, S.
Bilbault, J. M.
Marquié, P.
机构
[1] Russian Acad Sci, Inst Phys Appl, Nizhnii Novgorod 603950, Russia
[2] Univ Bourgogne, CNRS, UMR 5158, Lab LE21, F-21078 Dijon, France
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
neural network; interface lattice; nonlinear circuits;
D O I
10.1142/S0218127406015003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics of propagating interfaces in a bistable neural network is investigated. We consider the network composed of two coupled 1D lattices and assume that they interact in a local spatial point (pin contact). The network unit is modeled by the FitzHugh-Nagumo-like system in a bistable oscillator mode. The interfaces describe the transition of the network units from the rest (unexcited) state to the excited state where each unit exhibits periodic sequences of excitation pulses or action potentials. We show how the localized inter-layer interaction provides an '' excitatory '' or '' inhibitory '' action to the oscillatory activity. In particular, we describe the interface propagation failure and the initiation of spreading activity due to the pin contact. We provide analytical results, computer simulations and physical experiments with two-layer electronic arrays of bistable cells.
引用
收藏
页码:589 / 600
页数:12
相关论文
共 50 条
  • [31] Recurrent Neural Network Classifier for Three Layer Conceptual Network and Performance Evaluation
    Rhaman, Md. Khalilur
    Endo, Tsutomu
    2008 11TH INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY: ICCIT 2008, VOLS 1 AND 2, 2008, : 881 - 886
  • [32] Partitioning multi-layer edge network for neural network collaborative computing
    Li, Qiang
    Zhou, Ming-Tuo
    Ren, Tian-Feng
    Jiang, Cheng-Bin
    Chen, Yong
    EURASIP JOURNAL ON WIRELESS COMMUNICATIONS AND NETWORKING, 2023, 2023 (01)
  • [33] Partitioning multi-layer edge network for neural network collaborative computing
    Qiang Li
    Ming-Tuo Zhou
    Tian-Feng Ren
    Cheng-Bin Jiang
    Yong Chen
    EURASIP Journal on Wireless Communications and Networking, 2023
  • [34] TONE INSTRUMENT ESTIMATION USING SINGLE LAYER NEURAL NETWORK
    Takitani, Yu
    Arakawa, Toshiya
    INTERNATIONAL JOURNAL OF INNOVATIVE COMPUTING INFORMATION AND CONTROL, 2020, 16 (06): : 2143 - 2152
  • [35] Modelling of thin-layer drying using neural network
    Farkas, I
    Reményi, P
    Biró, A
    ARTIFICIAL INTELLIGENCE IN AGRICULTURE 1998, 1998, : 95 - 98
  • [36] Application of four-layer neural network on information extraction
    Han, M
    Cheng, L
    Meng, H
    PROCEEDINGS OF THE INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS 2003, VOLS 1-4, 2003, : 2146 - 2151
  • [37] Computational Complexity of Neural Network Linear Layer Inference Optimizations
    Pendl, Klaus
    Rudic, Branislav
    4TH INTERDISCIPLINARY CONFERENCE ON ELECTRICS AND COMPUTER, INTCEC 2024, 2024,
  • [38] Image Zooming Using a Multi-layer Neural Network
    Hassanpour, H.
    Nowrozian, N.
    AlyanNezhadi, M. M.
    Samadiani, N.
    COMPUTER JOURNAL, 2018, 61 (11): : 1737 - 1748
  • [39] EXPERIMENTAL DEMONSTRATION OF OPTICAL 3-LAYER NEURAL NETWORK
    KASAMA, N
    HAYASAKI, Y
    YATAGAI, T
    MORI, M
    ISHIHARA, S
    JAPANESE JOURNAL OF APPLIED PHYSICS PART 2-LETTERS & EXPRESS LETTERS, 1990, 29 (08): : L1565 - L1568
  • [40] Application of four-layer neural network on information extraction
    Han, M
    Cheng, L
    Meng, H
    NEURAL NETWORKS, 2003, 16 (5-6) : 547 - 553