Propagating interfaces in a two-layer bistable neural network

被引:1
|
作者
Kazantsev, V. B.
Nekorkin, V. I.
Morfu, S.
Bilbault, J. M.
Marquié, P.
机构
[1] Russian Acad Sci, Inst Phys Appl, Nizhnii Novgorod 603950, Russia
[2] Univ Bourgogne, CNRS, UMR 5158, Lab LE21, F-21078 Dijon, France
来源
INTERNATIONAL JOURNAL OF BIFURCATION AND CHAOS | 2006年 / 16卷 / 03期
基金
俄罗斯基础研究基金会;
关键词
neural network; interface lattice; nonlinear circuits;
D O I
10.1142/S0218127406015003
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The dynamics of propagating interfaces in a bistable neural network is investigated. We consider the network composed of two coupled 1D lattices and assume that they interact in a local spatial point (pin contact). The network unit is modeled by the FitzHugh-Nagumo-like system in a bistable oscillator mode. The interfaces describe the transition of the network units from the rest (unexcited) state to the excited state where each unit exhibits periodic sequences of excitation pulses or action potentials. We show how the localized inter-layer interaction provides an '' excitatory '' or '' inhibitory '' action to the oscillatory activity. In particular, we describe the interface propagation failure and the initiation of spreading activity due to the pin contact. We provide analytical results, computer simulations and physical experiments with two-layer electronic arrays of bistable cells.
引用
收藏
页码:589 / 600
页数:12
相关论文
共 50 条
  • [21] A Novel Two-Layer Model for Overall Quality Assessment of Multichannel Audio
    Liu, Jiyue
    Wang, Jing
    Liu, Min
    Xie, Xiang
    Kuang, Jingming
    CHINA COMMUNICATIONS, 2017, 14 (09) : 42 - 51
  • [22] Two-layer volt/var/total harmonic distortion control in distribution network based on PVs output and load forecast errors
    Sayadi, Fahimeh
    Esmaeili, Saeid
    Keynia, Farshid
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2017, 11 (08) : 2130 - 2137
  • [23] Coupled convolution layer for convolutional neural network
    Uchida, Kazutaka
    Tanaka, Masayuki
    Okutomi, Masatoshi
    NEURAL NETWORKS, 2018, 105 : 197 - 205
  • [24] Neural network modeling of thin carbon layer
    Szota, Michal
    Jasinski, Jozef
    Nabialek, Marcin
    OPTICA APPLICATA, 2009, 39 (04) : 807 - 813
  • [25] Complex nonlinear neural network prediction with IOWA layer
    Hussain, Walayaty
    Merigo, Jose M.
    Gil-Lafuente, Jaime
    Gao, Honghao
    SOFT COMPUTING, 2023, 27 (08) : 4853 - 4863
  • [26] Complex nonlinear neural network prediction with IOWA layer
    Walayat Hussain
    Jóse M. Merigó
    Jaime Gil-Lafuente
    Honghao Gao
    Soft Computing, 2023, 27 : 4853 - 4863
  • [27] The application of neural network in the research of the atmospheric boundary layer
    Feng, XF
    Shi, QL
    ICEMI'2003: PROCEEDINGS OF THE SIXTH INTERNATIONAL CONFERENCE ON ELECTRONIC MEASUREMENT & INSTRUMENTS, VOLS 1-3, 2003, : 1974 - 1977
  • [28] Best k-Layer Neural Network Approximations
    Lim, Lek-Heng
    Michalek, Mateusz
    Qi, Yang
    CONSTRUCTIVE APPROXIMATION, 2022, 55 (01) : 583 - 604
  • [29] Best k-Layer Neural Network Approximations
    Lek-Heng Lim
    Mateusz Michałek
    Yang Qi
    Constructive Approximation, 2022, 55 : 583 - 604
  • [30] Statistical mechanical analysis of learning dynamics of two-layer perceptron with multiple output units
    Yoshida, Yuki
    Karakida, Ryo
    Okada, Masato
    Amari, Shun-Ichi
    JOURNAL OF PHYSICS A-MATHEMATICAL AND THEORETICAL, 2019, 52 (18)