Geometrical description of fractional Chern insulators based on static structure factor calculations

被引:22
作者
Dobardzic, E. [1 ]
Milovanovic, M. V. [2 ]
Regnault, N. [3 ,4 ,5 ]
机构
[1] Univ Belgrade, Fac Phys, Belgrade 11001, Serbia
[2] Univ Belgrade, Inst Phys Belgrade, Comp Sci Lab, Belgrade 11080, Serbia
[3] Princeton Univ, Dept Phys, Princeton, NJ 08544 USA
[4] ENS, Lab Pierre Aigrain, F-75005 Paris, France
[5] CNRS, F-75005 Paris, France
来源
PHYSICAL REVIEW B | 2013年 / 88卷 / 11期
关键词
TOPOLOGICAL INSULATORS; LANDAU-LEVELS; HALL STATE; EXCITATIONS;
D O I
10.1103/PhysRevB.88.115117
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
We study the static structure factor of the fractional Chern insulator Laughlin-like state and provide analytical forms for this quantity in the long-distance limit. In the course of this we identify the averaged over the Brillouin zone Fubini-Study metric as the relevant metric in the long-distance limit. We discuss under which conditions the static structure factor will assume the usual behavior of a Laughlin-like fractional quantum Hall system, i.e., the scenario of S. M. Girvin, A. H. MacDonald, and P. M. Platzman [Phys. Rev. B 33, 2481 (1986)]. We study the influence of the departure of the averaged over the Brillouin zone Fubini-Study metric from its fractional quantum Hall value which appears in the long-distance analysis as an effective change of the filling factor. According to our exact-diagonalization results on the Haldane model and analytical considerations we find persistence of the fractional Chern insulator state even in this region of the parameter space.
引用
收藏
页数:12
相关论文
共 37 条
[1]   BREAKDOWN OF THE FERMI-LIQUID DUE TO LONG-RANGE INTERACTIONS [J].
BARES, PA ;
WEN, XG .
PHYSICAL REVIEW B, 1993, 48 (12) :8636-8650
[2]   Emergent many-body translational symmetries of Abelian and non-Abelian fractionally filled topological insulators [J].
Bernevig, B. Andrei ;
Regnault, N. .
PHYSICAL REVIEW B, 2012, 85 (07)
[3]   Model fractional quantum Hall states and Jack polynomials [J].
Bernevig, B. Andrei ;
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2008, 100 (24)
[4]  
Feenberg E., 1969, Theory of Quantum Fluids
[5]   MAGNETO-ROTON THEORY OF COLLECTIVE EXCITATIONS IN THE FRACTIONAL QUANTUM HALL-EFFECT [J].
GIRVIN, SM ;
MACDONALD, AH ;
PLATZMAN, PM .
PHYSICAL REVIEW B, 1986, 33 (04) :2481-2494
[6]   From fractional Chern insulators to a fractional quantum spin hall effect [J].
Goerbig, M. O. .
EUROPEAN PHYSICAL JOURNAL B, 2012, 85 (01)
[7]   Fractional quantum Hall effect in optical lattices [J].
Hafezi, M. ;
Sorensen, A. S. ;
Demler, E. ;
Lukin, M. D. .
PHYSICAL REVIEW A, 2007, 76 (02)
[8]   Geometrical Description of the Fractional Quantum Hall Effect [J].
Haldane, F. D. M. .
PHYSICAL REVIEW LETTERS, 2011, 107 (11)
[9]  
Haldane F. D. M., ARXIV11120990