Numerical Treatment of Time-Fractional Klein-Gordon Equation Using Redefined Extended Cubic B-Spline Functions

被引:36
作者
Amin, Muhammad [1 ,2 ]
Abbas, Muhammad [3 ,4 ]
Iqbal, Muhammad Kashif [5 ]
Baleanu, Dumitru [6 ,7 ,8 ]
机构
[1] Natl Coll Business Adm & Econ, Dept Math, Lahore, Pakistan
[2] Univ Sargodha, Dept Math, Sargodha, Pakistan
[3] Ton Duc Thang Univ, Informetr Res Grp, Ho Chi Minh City, Vietnam
[4] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
[5] Govt Coll Univ, Dept Math, Faisalabad, Pakistan
[6] Cankaya Univ, Fac Arts & Sci, Dept Math, Ankara, Turkey
[7] China Med Univ, Dept Med Res, Taichung, Taiwan
[8] Inst Space Sci, Bucharest, Romania
关键词
redefined extended cubic B-spline; time fractional Klein-Gorden equation; Caputo fractional derivative; finite difference method; convergence analysis; DIFFERENTIAL-EQUATIONS; CHEBYSHEV POLYNOMIALS; SINE-GORDON; SCHEME; MODEL; APPROXIMATION; STABILITY; LEGENDRE; SYSTEMS;
D O I
10.3389/fphy.2020.00288
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
In this article we develop a numerical algorithm based on redefined extended cubic B-spline functions to explore the approximate solution of the time-fractional Klein-Gordon equation. The proposed technique employs the finite difference formulation to discretize the Caputo fractional time derivative of order alpha is an element of (1, 2] and uses redefined extended cubic B-spline functions to interpolate the solution curve over a spatial grid. A stability analysis of the scheme is conducted, which confirms that the errors do not amplify during execution of the numerical procedure. The derivation of a uniform convergence result reveals that the scheme isO(h(2)+ Delta t(2-alpha)) accurate. Some computational experiments are carried out to verify the theoretical results. Numerical simulations comparing the proposed method with existing techniques demonstrate that our scheme yields superior outcomes.
引用
收藏
页数:13
相关论文
共 54 条
[1]  
Agarwal P., 2018, P MATH STAT P ICFDA, DOI [10.1007/978-981-15-0430-3, DOI 10.1007/978-981-15-0430-3]
[2]  
Agarwal P., 2020, SPECIAL FUNCTIONS AN
[3]  
Agarwal P., 2017, ADV REAL COMPLEX ANA
[4]   A fourth order non-polynomial quintic spline collocation technique for solving time fractional superdiffusion equations [J].
Amin, Muhammad ;
Abbas, Muhammad ;
Iqbal, Muhammad Kashif ;
Ismail, Ahmad Izani Md. ;
Baleanu, Dumitru .
ADVANCES IN DIFFERENCE EQUATIONS, 2019, 2019 (01)
[5]   Analytical solution of a Maxwell fluid with slip effects in view of the Caputo-Fabrizio derivative [J].
Asif, N. A. ;
Hammouch, Z. ;
Riaz, M. B. ;
Bulut, H. .
EUROPEAN PHYSICAL JOURNAL PLUS, 2018, 133 (07) :1-13
[6]  
ATANGANA A, 2013, ABSTR APPL ANAL, DOI DOI 10.1155/2013/279681
[7]   Conservatory of Kaup-Kupershmidt Equation to the Concept of Fractional Derivative with and without Singular Kernel [J].
Atangana, Abdon ;
Goufo, Emile Franc Doungmo .
ACTA MATHEMATICAE APPLICATAE SINICA-ENGLISH SERIES, 2018, 34 (02) :351-361
[8]   Mathematical models of HIV/AIDS and drug addiction in prisons [J].
Babaci, Afshin ;
Jafari, Hossein ;
Liya, Atena .
EUROPEAN PHYSICAL JOURNAL PLUS, 2020, 135 (05)
[9]   A fractional order HIV/AIDS model based on the effect of screening of unaware infectives [J].
Babaei, Afshin ;
Jafari, Hossein ;
Ahmadi, Masoumeh .
MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2019, 42 (07) :2334-2343
[10]   Stability of a finite volume element method for the time-fractional advection-diffusion equation [J].
Badr, M. ;
Yazdani, A. ;
Jafari, H. .
NUMERICAL METHODS FOR PARTIAL DIFFERENTIAL EQUATIONS, 2018, 34 (05) :1459-1471