Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature

被引:239
|
作者
Halelfadl, Salma [1 ]
Estelle, Patrice [2 ]
Aladag, Bahadir [3 ]
Doner, Nimeti [3 ]
Mare, Thierry [1 ]
机构
[1] Univ Rennes 1, IUT Rennes, Equipe Mat & Thermorheol, UEB,LGCGM EA3913, F-35704 Rennes 7, France
[2] Univ Rennes 1, IUT St Malo, Equipe Mat & Thermorheol, UEB,LGCGM EA3913, F-35417 St Malo, France
[3] Dumlupinar Univ, Dept Mech Engn, TR-43270 Kutahya, Turkey
关键词
Viscosity; CNT nanofluid; Shear-thinning; Agglomerates; Temperature; EFFECTIVE THERMAL-CONDUCTIVITY; AQUEOUS SUSPENSIONS; HEAT-TRANSFER; AGGREGATION KINETICS; RHEOLOGICAL BEHAVIOR; SHEAR RATE; FLOW;
D O I
10.1016/j.ijthermalsci.2013.04.013
中图分类号
O414.1 [热力学];
学科分类号
摘要
Experimental results on the steady-state viscosity of carbon nanotubes water-based nanofluids are presented considering the influence of particle volume fraction and temperature ranging from 0 to 40 degrees C. The suspensions consist of multi-walled carbon nanotubes dispersed in de-ionized water and they are stabilized by a surfactant. The aspect ratio of nanotubes is close to 160 and the particle volume fraction varies between 0.0055% and 0.55%. It is shown that the nanofluids behave as shear-thinning materials for high particle content. For lower particle content, the nanofluids are quite Newtonian. It is also observed that the relative viscosity of nanofluids at high shear rate does not vary with temperature. Moreover, the evolution of relative viscosity at high shear rate is well predicted by the Maron-Pierce model considering the effect of nanoparticles agglomerates. (C) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:111 / 117
页数:7
相关论文
共 50 条
  • [1] Shear History Effect on the Viscosity of Carbon Nanotubes Water-based Nanofluid
    Estelle, Patrice
    Halelfadl, Salma
    Doner, Nimeti
    Mare, Thierry
    CURRENT NANOSCIENCE, 2013, 9 (02) : 225 - 230
  • [2] Lignin as dispersant for water-based carbon nanotubes nanofluids: Impact on viscosity and thermal conductivity
    Estelle, P.
    Halelfadl, S.
    Mare, T.
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2014, 57 : 8 - 12
  • [3] Experimental Study on Thermal Conductivity and Viscosity of Water-Based Nanofluids
    Tavman, Ismail
    Turgut, Alpaslan
    Chirtoc, Mihai
    Hadjov, Kliment
    Fudym, Olivier
    Tavman, Sebnem
    HEAT TRANSFER RESEARCH, 2010, 41 (03) : 339 - 351
  • [4] Viscosity Analysis of Water-based Copper Oxide Nanofluids
    Singh, J.
    Kumar, R.
    Kumar, H.
    Gupta, M.
    INTERNATIONAL JOURNAL OF ENGINEERING, 2023, 36 (03): : 481 - 489
  • [5] Experimental investigation and modeling of the viscosity of some water-based nanofluids
    Vakilinejad, Alif
    Aroon, Mohammad Ali
    Al-Abri, Mohammed
    Bahmanyar, Hossein
    Al-Ghafri, Buthayna
    Myint, Myo Tay Zar
    Vakili-Nezhaad, G. Reza
    CHEMICAL ENGINEERING COMMUNICATIONS, 2021, 208 (07) : 1054 - 1068
  • [6] Unexpected sharp peak in thermal conductivity of carbon nanotubes water-based nanofluids
    Mare, Thierry
    Halelfadl, Salma
    Van Vaerenbergh, Stefan
    Estelle, Patrice
    INTERNATIONAL COMMUNICATIONS IN HEAT AND MASS TRANSFER, 2015, 66 : 80 - 83
  • [7] Designing a committee of machines for modeling viscosity of water-based nanofluids
    Hemmati-Sarapardeh, Abdolhossein
    Hatami, Sobhan
    Taghvaei, Hamed
    Naseri, Ali
    Band, Shahab S.
    Chau, Kwok-wing
    ENGINEERING APPLICATIONS OF COMPUTATIONAL FLUID MECHANICS, 2021, 15 (01) : 1967 - 1987
  • [8] Efficiency of carbon nanotubes water based nanofluids as coolants
    Halelfadl, Salma
    Mare, Thierry
    Estelle, Patrice
    EXPERIMENTAL THERMAL AND FLUID SCIENCE, 2014, 53 : 104 - 110
  • [9] Effects of multi walled carbon nanotubes shape and size on thermal conductivity and viscosity of nanofluids
    Omrani, A. N.
    Esmaeilzadeh, E.
    Jafari, M.
    Behzadmehr, A.
    DIAMOND AND RELATED MATERIALS, 2019, 93 : 96 - 104
  • [10] Thermal Conductivity and Viscosity Measurements of Water-Based TiO2 Nanofluids
    Turgut, A.
    Tavman, I.
    Chirtoc, M.
    Schuchmann, H. P.
    Sauter, C.
    Tavman, S.
    INTERNATIONAL JOURNAL OF THERMOPHYSICS, 2009, 30 (04) : 1213 - 1226