Universal Imaging of Full Strain Tensor in 2D Crystals with Third-Harmonic Generation

被引:42
作者
Liang, Jing [1 ]
Wang, Jinhuan [2 ]
Zhang, Zhihong [1 ]
Su, Yingze [1 ]
Guo, Yi [1 ]
Qiao, Ruixi [1 ]
Song, Peizhao [1 ]
Gao, Peng [1 ]
Zhao, Yun [2 ]
Jiao, Qingze [2 ]
Wu, Shiwei [3 ,4 ]
Sun, Zhipei [5 ]
Yu, Dapeng [6 ,7 ]
Liu, Kaihui [1 ]
机构
[1] Peking Univ, Acad Adv Interdisciplinary Studies, Sch Phys, State Key Lab Mesoscop Phys,Collaborat Innovat Ct, Beijing 100871, Peoples R China
[2] Beijing Inst Technol, Sch Chem & Chem Engn, Beijing 100081, Peoples R China
[3] Fudan Univ, Key Lab Micro & Nano Photon Struct MOE, State Key Lab Surface Phys, Shanghai 200433, Peoples R China
[4] Fudan Univ, Dept Phys, Shanghai 200433, Peoples R China
[5] Aalto Univ, Dept Micro & Nanosci, Espoo 02150, Finland
[6] South Univ Sci & Technol, Shenzhen Inst Quantum Sci & Engn, Shenzhen 518055, Peoples R China
[7] South Univ Sci & Technol, Dept Phys, Shenzhen 518055, Peoples R China
基金
国家重点研发计划;
关键词
2D materials; photoelastic tensor; strain tensor characterization; third-harmonic generation; 2ND-HARMONIC GENERATION; ELASTIC PROPERTIES; MONOLAYER MOS2; WS2; WSE2;
D O I
10.1002/adma.201808160
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Quantitatively mapping and monitoring the strain distribution in 2D materials is essential for their physical understanding and function engineering. Optical characterization methods are always appealing due to unique noninvasion and high-throughput advantages. However, all currently available optical spectroscopic techniques have application limitation, e.g., photoluminescence spectroscopy is for direct-bandgap semiconducting materials, Raman spectroscopy is for ones with Raman-active and strain-sensitive phonon modes, and second-harmonic generation spectroscopy is only for noncentrosymmetric ones. Here, a universal methodology to measure the full strain tensor in any 2D crystalline material by polarization-dependent third-harmonic generation is reported. This technique utilizes the third-order nonlinear optical response being a universal property in 2D crystals and the nonlinear susceptibility has a one-to-one correspondence to strain tensor via a photoelastic tensor. The photoelastic tensor of both a noncentrosymmetric D-3h WS2 monolayer and a centrosymmetric D-3d WS2 bilayer is successfully determined, and the strain tensor distribution in homogenously strained and randomly strained monolayer WS2 is further mapped. In addition, an atlas of photoelastic tensors to monitor the strain distribution in 2D materials belonging to all 32 crystallographic point groups is provided. This universal characterization on strain tensor should facilitate new functionality designs and accelerate device applications in 2D-materials-based electronic, optoelectronic, and photovoltaic devices.
引用
收藏
页数:8
相关论文
共 46 条
[1]   Nonlinear Optics with 2D Layered Materials [J].
Autere, Anton ;
Jussila, Henri ;
Dai, Yunyun ;
Wang, Yadong ;
Lipsanen, Harri ;
Sun, Zhipei .
ADVANCED MATERIALS, 2018, 30 (24)
[2]   Nonlinear optical responses in two-dimensional transition metal dichalcogenide multilayer: WS2, WSe2, MoS2 and Mo0.5W0.5S2 [J].
Bikorimana, S. ;
Lama, P. ;
Walser, A. ;
Dorsinville, R. ;
Anghel, S. ;
Mitioglu, A. ;
Micu, A. ;
Kulyuk, L. .
OPTICS EXPRESS, 2016, 24 (18) :20685-20695
[3]   Local Strain Engineering in Atomically Thin MoS2 [J].
Castellanos-Gomez, Andres ;
Roldan, Rafael ;
Cappelluti, Emmanuele ;
Buscema, Michele ;
Guinea, Francisco ;
van der Zant, Herre S. J. ;
Steele, Gary A. .
NANO LETTERS, 2013, 13 (11) :5361-5366
[4]   Third order optical nonlinearity of graphene [J].
Cheng, J. L. ;
Vermeulen, N. ;
Sipe, J. E. .
NEW JOURNAL OF PHYSICS, 2014, 16
[5]   Kinetic Nature of Grain Boundary Formation in As-Grown MoS2 Monolayers [J].
Cheng, Jingxin ;
Jiang, Tao ;
Ji, Qingqing ;
Zhang, Yu ;
Li, Zhiming ;
Shan, Yuwei ;
Zhang, Yanfeng ;
Gong, Xingao ;
Liu, Weitao ;
Wu, Shiwei .
ADVANCED MATERIALS, 2015, 27 (27) :4069-4074
[6]   Bandgap Engineering of Strained Monolayer and Bilayer MoS2 [J].
Conley, Hiram J. ;
Wang, Bin ;
Ziegler, Jed I. ;
Haglund, Richard F., Jr. ;
Pantelides, Sokrates T. ;
Bolotin, Kirill I. .
NANO LETTERS, 2013, 13 (08) :3626-3630
[7]  
Feng J, 2012, NAT PHOTONICS, V6, P865, DOI [10.1038/NPHOTON.2012.285, 10.1038/nphoton.2012.285]
[8]   Experimental Demonstration of Continuous Electronic Structure Tuning via Strain in Atomically Thin MoS2 [J].
He, Keliang ;
Poole, Charles ;
Mak, Kin Fai ;
Shan, Jie .
NANO LETTERS, 2013, 13 (06) :2931-2936
[9]   Strain engineering in monolayer WS2, MoS2, and the WS2/MoS2 heterostructure [J].
He, Xin ;
Li, Hai ;
Zhu, Zhiyong ;
Dai, Zhenyu ;
Yang, Yang ;
Yang, Peng ;
Zhang, Qiang ;
Li, Peng ;
Schwingenschlogl, Udo ;
Zhang, Xixiang .
APPLIED PHYSICS LETTERS, 2016, 109 (17)
[10]   Coherent Nonlinear Optical Response of Graphene [J].
Hendry, E. ;
Hale, P. J. ;
Moger, J. ;
Savchenko, A. K. ;
Mikhailov, S. A. .
PHYSICAL REVIEW LETTERS, 2010, 105 (09)