LINEAR ISOMORPHIC EULER FRACTIONAL DIFFERENCE SEQUENCE SPACES AND THEIR TOEPLITZ DUALS

被引:0
作者
Raj, Kuldip [1 ]
Aiyub, M. [2 ]
Saini, Kavita [1 ]
机构
[1] Shri Mata Vaishno Devi Univ, Sch Math, Katra 182320, J&K, India
[2] Univ Bahrain, Coll Sci, Dept Math, Manam, Bahrain
来源
JOURNAL OF APPLIED MATHEMATICS & INFORMATICS | 2022年 / 40卷 / 3-4期
关键词
Euler mean; fractional difference operator; matrix transformation; a; beta; gamma-duals; MATRIX TRANSFORMATIONS; ORDER; CONVERGENT;
D O I
10.14317/jami.2022.657
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In the present paper we introduce and study Euler sequence spaces of fractional difference and backward difference operators. We make an effort to prove that these spaces are BK-spaces and linearly isomorphic. Further, Schauder basis for Euler fractional difference sequence spaces e(zeta) (0,p) (Delta((beta)) , del(m)) and e(zeta) (c,p)(Delta((beta)), del(m) ) are also elaborate. In addition to this, we determine the alpha-, beta-, gamma- duals of these spaces.
引用
收藏
页码:657 / 668
页数:12
相关论文
共 25 条