Submultiplicativity of the numerical radius of commuting matrices of order two

被引:6
作者
Li, Chi-Kwong [1 ]
Poon, Yiu-Tung [2 ]
机构
[1] Coll William & Mary, Dept Math, Williamsburg, VA 23187 USA
[2] Iowa State Univ, Dept Math, Ames, IA 50011 USA
关键词
Numerical radius; Submultiplicative;
D O I
10.1016/j.jmaa.2019.02.066
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Denote by w(T) the numerical radius of a matrix T. An elementary proof is given to the fact that w(AB) <= w(A)w(B) for a pair of commuting matrices of order two, and characterization is given for the matrix pairs that attain the quality. (C) 2019 Published by Elsevier Inc.
引用
收藏
页码:730 / 735
页数:6
相关论文
共 11 条
[1]  
ANDO T, 1973, ACTA SCI MATH, V34, P11
[2]  
[Anonymous], 2013, Matrix Analysis
[3]  
Axelsson O., 1994, LINEAR MULTILINEAR A, V37, P225
[4]   Extremality of numerical radii of matrix products [J].
Gau, Hwa-Long ;
Wu, Pei Yuan .
LINEAR ALGEBRA AND ITS APPLICATIONS, 2016, 501 :17-36
[5]  
Gustafson K.E., 1997, Numerical Range
[6]  
HALMOS P. R., 1967, HILBERT SPACE PROBLE
[7]  
HOLBROOK JA, 1992, LECT NOTES PURE APPL, V136, P189
[8]   Theory vs. Experiment: Multiplicative Inequalities for the Numerical Radius of Commuting Matrices [J].
Holbrook, John ;
Schoch, Jean-Pierre .
TOPICS IN OPERATOR THEORY: OPERATORS, MATRICES AND ANALYTIC FUNCTIONS, VOL 1, 2010, 202 :273-+
[9]  
Horn R. A., 1991, TOPICS MATRIX ANAL
[10]   A simple proof of the elliptical range theorem [J].
Li, CK .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 1996, 124 (07) :1985-1986