Unsupervised Deep Shape from Template

被引:1
作者
Orumi, Mohammad Ali Bagheri [1 ]
Sepanj, M. Hadi [1 ]
Famouri, Mahmoud [1 ]
Azimifar, Zohreh [1 ]
Wong, Alexander [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I | 2019年 / 11662卷
关键词
Deep learning; Depth estimation; Shape from Template; 3D RECONSTRUCTION;
D O I
10.1007/978-3-030-27202-9_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents Unsupervised Deep Shape from Template (UDSfT), a novel method that leverages deep neural networks (DNNs) for reconstructing the 3D surface of an object using a single image. More specifically, the reconstruction of isometric deformable objects is achieved in the proposed UDSfT method via a DNN-based template-based framework. Unlike previous approaches that leverage supervised learning, the proposed UDSfT method leverages the notion of unsupervised learning to overcome this obstacle and provide real-time 3D reconstruction. More specifically, UDSfT achieves this via an unsupervised structure that leverages a combination of real-data and synthetic data. Experimental results show that the proposed UDSfT method outperforms the state-of-the-art Shape from Template methods in object 3D reconstruction.
引用
收藏
页码:440 / 451
页数:12
相关论文
共 16 条
[11]   3D Feature Constrained Reconstruction for Low-Dose CT Imaging [J].
Liu, Jin ;
Hu, Yining ;
Yang, Jian ;
Chen, Yang ;
Shu, Huazhong ;
Luo, Limin ;
Feng, Qianjing ;
Gui, Zhiguo ;
Coatrieux, Gouenou .
IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (05) :1232-1247
[12]  
Östlund J, 2012, LECT NOTES COMPUT SC, V7574, P412, DOI 10.1007/978-3-642-33712-3_30
[13]  
Orumi MAB, 2018, PROCEEDINGS OF THE INTERNATIONAL CONFERENCE ON PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE (ICPRAI 2018), P256
[14]  
Szeliski R, 2011, TEXTS COMPUT SCI, P1, DOI 10.1007/978-1-84882-935-0
[15]   Monocular 3D Reconstruction of Locally Textured Surfaces [J].
Varol, Aydin ;
Shaji, Appu ;
Salzmann, Mathieu ;
Fua, Pascal .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2012, 34 (06) :1118-1130
[16]   A hybrid MLP-CNN classifier for very fine resolution remotely sensed image classification [J].
Zhang, Ce ;
Pan, Xin ;
Li, Huapeng ;
Gardiner, Andy ;
Sargent, Isabel ;
Hare, Jonathon ;
Atkinson, Peter M. .
ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 140 :133-144