Unsupervised Deep Shape from Template

被引:1
作者
Orumi, Mohammad Ali Bagheri [1 ]
Sepanj, M. Hadi [1 ]
Famouri, Mahmoud [1 ]
Azimifar, Zohreh [1 ]
Wong, Alexander [2 ]
机构
[1] Shiraz Univ, Sch Elect & Comp Engn, Shiraz, Iran
[2] Univ Waterloo, Dept Syst Design Engn, Waterloo, ON N2L 3G1, Canada
来源
IMAGE ANALYSIS AND RECOGNITION, ICIAR 2019, PT I | 2019年 / 11662卷
关键词
Deep learning; Depth estimation; Shape from Template; 3D RECONSTRUCTION;
D O I
10.1007/978-3-030-27202-9_40
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents Unsupervised Deep Shape from Template (UDSfT), a novel method that leverages deep neural networks (DNNs) for reconstructing the 3D surface of an object using a single image. More specifically, the reconstruction of isometric deformable objects is achieved in the proposed UDSfT method via a DNN-based template-based framework. Unlike previous approaches that leverage supervised learning, the proposed UDSfT method leverages the notion of unsupervised learning to overcome this obstacle and provide real-time 3D reconstruction. More specifically, UDSfT achieves this via an unsupervised structure that leverages a combination of real-data and synthetic data. Experimental results show that the proposed UDSfT method outperforms the state-of-the-art Shape from Template methods in object 3D reconstruction.
引用
收藏
页码:440 / 451
页数:12
相关论文
共 16 条
  • [1] [Anonymous], 2018, VIRTUAL REALITY AUGM, DOI DOI 10.1007/978-3-030-01790-3_4
  • [2] Robotic Arm Based 3D Reconstruction Test Automation
    Banerjee, Debdeep
    Yu, Kevin
    Aggarwal, Garima
    [J]. IEEE ACCESS, 2018, 6 : 7206 - 7213
  • [3] Shape-from-Template
    Bartoli, Adrien
    Gerard, Yan
    Chadebecq, Francois
    Collins, Toby
    Pizarro, Daniel
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2015, 37 (10) : 2099 - 2118
  • [4] Inextensible Non-Rigid Structure-from-Motion by Second-Order Cone Programming
    Chhatkuli, Ajad
    Pizarro, Daniel
    Collins, Toby
    Bartoli, Adrien
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2018, 40 (10) : 2428 - 2441
  • [5] Template-Based Monocular 3D Shape Recovery Using Laplacian Meshes
    Dat Tien Ngo
    Oestlund, Jonas
    Fua, Pascal
    [J]. IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2016, 38 (01) : 172 - 187
  • [6] Predicting Depth, Surface Normals and Semantic Labels with a Common Multi-Scale Convolutional Architecture
    Eigen, David
    Fergus, Rob
    [J]. 2015 IEEE INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV), 2015, : 2650 - 2658
  • [7] Fast shape-from-template using local features
    Famouri, Mahmoud
    Bartoli, Adrien
    Azimifar, Zohreh
    [J]. MACHINE VISION AND APPLICATIONS, 2018, 29 (01) : 73 - 93
  • [8] Hartley R., 2003, MULTIPLE VIEW GEOMET
  • [9] T-CNN: Tubelets With Convolutional Neural Networks for Object Detection From Videos
    Kang, Kai
    Li, Hongsheng
    Yan, Junjie
    Zeng, Xingyu
    Yang, Bin
    Xiao, Tong
    Zhang, Cong
    Wang, Zhe
    Wang, Ruohui
    Wang, Xiaogang
    Ouyang, Wanli
    [J]. IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS FOR VIDEO TECHNOLOGY, 2018, 28 (10) : 2896 - 2907
  • [10] Kingma DP, 2014, ADV NEUR IN, V27