Computer-assisted design and experimental validation of multielectrode electrorefiner for spent nuclear fuel treatment using a tertiary model

被引:17
作者
Kim, Seung Hyun [1 ]
Park, Sung Bin [2 ]
Lee, Sung Jai [2 ]
Kim, Jeong Guk [2 ]
Lee, Han Soo [2 ]
Lee, Jong Hyeon [1 ,3 ]
机构
[1] Chungnam Natl Univ, Grad Sch Green Energy Technol, Taejon 305764, South Korea
[2] Korea Atom Energy Res Inst, Taejon 305353, South Korea
[3] Chungnam Natl Univ, Dept NanoMat Engn, Taejon 305764, South Korea
关键词
PYROPROCESSING TECHNOLOGY DEVELOPMENT; LICL-KCL; MOLTEN; URANIUM;
D O I
10.1016/j.nucengdes.2013.01.009
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
It is important to understand electrochemical phenomena in order to design an electrorefiner system suitable for pyroprocessing, particularly one equipped with complicated electrodes. Computer simulation of the electrochemical cells is an effective tool for the visualization of processing parameters such as the potential distribution, current density, and concentration profile. The electrochemical parameters considered in this study are the exchange current density distribution and electrode arrangement. The application of a numerical model to design an electrorefiner for spent metallic nuclear fuel is discussed with respect to throughput, impurity contamination, and operating mode. A commercial finite element method package was used. In addition, calculations of the tertiary current density and an experimental validation of these results are presented. (c) 2013 Elsevier B.V. All rights reserved.
引用
收藏
页码:12 / 20
页数:9
相关论文
共 22 条
  • [1] [Anonymous], 2001, ELECTROCHEMICAL METH
  • [2] Numerical assessment of pyrochemical process performance for PEACER system
    Bae, Judong
    Nam, Hyo On
    Yi, Kyung Woo
    Park, Byung Gi
    Hwang, Ii Soon
    [J]. NUCLEAR ENGINEERING AND DESIGN, 2010, 240 (06) : 1679 - 1687
  • [3] Brett C., 1993, Electrochemistry: Principles, Methods, and Applications
  • [4] Britz D., 2005, Digital simulation in electrochemistry, V3rd
  • [5] Electrochemistry of thorium in LiCl-KCl eutectic melts
    Cassayre, L.
    Serp, J.
    Soucek, P.
    Malmbeck, R.
    Rebizant, J.
    Glatz, J.-P.
    [J]. ELECTROCHIMICA ACTA, 2007, 52 (26) : 7432 - 7437
  • [6] Uncertainty studies of real anode surface area in computational analysis for molten salt electrorefining
    Choi, Sungyeol
    Park, Jaeyeong
    Hoover, Robert O.
    Phongikaroon, Supathorn
    Simpson, Michael F.
    Kim, Kwang-Rag
    Hwang, Il Soon
    [J]. JOURNAL OF NUCLEAR MATERIALS, 2011, 416 (03) : 318 - 326
  • [7] Three-dimensional multispecies current density simulation of molten-salt electrorefining
    Choi, Sungyeol
    Park, Jaeyeong
    Kim, Kwang-Rag
    Jung, HyoSook
    Hwang, IlSoon
    Park, ByungGi
    Yi, KyungWoo
    Lee, Han-Soo
    Ahn, DoHee
    Paek, Seungwoo
    [J]. JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 503 (01) : 177 - 185
  • [8] COMSOL, 2012, COMSOL4 3 EL MOD US
  • [9] A Computational Model of the Mark-IV Electrorefiner: Phase I-Fuel Basket/Salt Interface
    Hoover, Robert
    Phongikaroon, Supathorn
    Li, Shelly
    Simpson, Michael
    Yoo, Tae-Sie
    [J]. JOURNAL OF ENGINEERING FOR GAS TURBINES AND POWER-TRANSACTIONS OF THE ASME, 2009, 131 (05):
  • [10] Diffusion coefficients of cerium and gadolinium in molten LiCl-KCl
    Iizuka, M
    [J]. JOURNAL OF THE ELECTROCHEMICAL SOCIETY, 1998, 145 (01) : 84 - 88