Interpretation of type 2 diabetes mellitus relevant GC-MS metabolomics fingerprints by using random forests

被引:13
作者
Huang, Jian-Hua [1 ]
Xie, Hua-Lin [1 ,3 ]
Yan, Jun [1 ]
Cao, Dong-Sheng [1 ]
Lu, Hong-Mei [1 ]
Xu, Qing-Song [2 ]
Liang, Yi-Zeng [1 ]
机构
[1] Cent South Univ, Res Ctr Modernizat Tradit Chinese Med, Dept Chem & Chem Engn, Changsha 410083, Hunan, Peoples R China
[2] Cent South Univ, Sch Math Sci & Comp Technol, Changsha 410083, Hunan, Peoples R China
[3] Yangtze Normal Univ, Sch Chem & Chem Engn, Fuling 408100, Peoples R China
关键词
BIOMARKER DISCOVERY; ALDOSE REDUCTASE; HUMAN URINE; IDENTIFICATION; CHROMATOGRAPHY; GLUCOSE; 1,5-ANHYDRO-D-GLUCITOL; QUANTIFICATION; METABOLISM; PREDICTION;
D O I
10.1039/c3ay40379c
中图分类号
O65 [分析化学];
学科分类号
070302 ; 081704 ;
摘要
In this study, we discussed the application of random forest (RF) methods for extracting relevant biological knowledge from two type 2 diabetes mellitus (T2DM) relevant metabolomics fingerprinting experiments. The models constructed by RF could visually discriminate type 2 diabetic mice from a healthy control group and represent the variance of metabolic profiles of diabetic mice in the therapeutic process with repaglinide. Simultaneously, some informative metabolites have been successfully discovered by means of variable importance ranking in the RF program. The current research demonstrated that RF was a versatile classification algorithm, which was suitable for the analysis of complex metabolomics data and would be a complement or an alternative to pathogenesis and pharmacodynamics research.
引用
收藏
页码:4883 / 4889
页数:7
相关论文
共 50 条
  • [31] Using probiotics for type 2 diabetes mellitus intervention: Advances, questions, and potential
    Sun, Zhongke
    Sun, Xuejiao
    Li, Juan
    Li, Zhaoyang
    Hu, Qingwei
    Li, Lili
    Hao, Xinqi
    Song, Maoping
    Li, Chengwei
    CRITICAL REVIEWS IN FOOD SCIENCE AND NUTRITION, 2020, 60 (04) : 670 - 683
  • [32] Analysis of serum metabolomics among biopsy-proven diabetic nephropathy, type 2 diabetes mellitus and healthy controls
    Tao, Sibei
    Zheng, Wen
    Liu, Yuan
    Li, Ling
    Li, Lingzhi
    Ren, Qian
    Shi, Min
    Liu, Jing
    Jiang, Jing
    Ma, Huichao
    Huang, Zhuo
    Xia, Zijing
    Pan, Jing
    Wei, Tiantian
    Wang, Yan
    Li, Peiyun
    Lan, Tian
    Ma, Liang
    Fu, Ping
    RSC ADVANCES, 2019, 9 (33) : 18713 - 18719
  • [33] Evaluation of Liver in Type 2 Diabetes Mellitus Using Unenhanced Computed Tomography
    Osama, Huda
    Siddig, Afraa
    Gareeballah, Awadia
    Gameraddin, Moawia
    Osman, Hanady Elyas
    INTERNATIONAL JOURNAL OF BIOMEDICINE, 2020, 10 (04) : 402 - 406
  • [34] Ion-Pair Selection Method for Pseudotargeted Metabolomics Based on SWATH MS Acquisition and Its Application in Differential Metabolite Discovery of Type 2 Diabetes
    Wang, Lichao
    Su, Benzhe
    Zeng, Zhongda
    Li, Chao
    Zhao, Xinjie
    Lv, Wangjie
    Xuan, Qiuhui
    Ouyang, Yang
    Zhou, Lina
    Yin, Peiyuan
    Peng, Xiaojun
    Lu, Xin
    Lin, Xiaohui
    Xu, Guowang
    ANALYTICAL CHEMISTRY, 2018, 90 (19) : 11401 - 11408
  • [35] Studies on the metabolism and detectability of the emerging drug of abuse diphenyl-2-pyrrolidinemethanol (D2PM) in rat urine using GC-MS and LC-HR-MS/MS
    Meyer, Markus R.
    Schmitt, Sara
    Maurer, Hans H.
    JOURNAL OF MASS SPECTROMETRY, 2013, 48 (02): : 243 - 249
  • [36] An Enhanced Diabetes Mellitus Prediction Using Feature Selection-Based Type-2 Fuzzy Model
    Awotunde, Joseph Bamidele
    Misra, Sanjay
    Pham, Quoc Trung
    FUTURE DATA AND SECURITY ENGINEERING. BIG DATA, SECURITY AND PRIVACY, SMART CITY AND INDUSTRY 4.0 APPLICATIONS, FDSE 2022, 2022, 1688 : 625 - 639
  • [37] Comparison of Balanites aegyptiaca parts: metabolome providing insights into plant health benefits and valorization purposes as analyzed using multiplex GC-MS, LC-MS, NMR-based metabolomics, and molecular networking
    Farag, Mohamed A. A.
    Baky, Mostafa H. H.
    Morgan, Ibrahim
    Khalifa, Mohamed R. R.
    Rennert, Robert
    Mohamed, Osama G. G.
    El-Sayed, Magdy M. M.
    Porzel, Andrea
    Wessjohann, Ludger A. A.
    Ramadan, Nehal S. S.
    RSC ADVANCES, 2023, 13 (31) : 21471 - 21493
  • [38] Identification of putative biomarkers for type 2 diabetes using metabolomics in the Korea Association REsource (KARE) cohort
    Lee, Heun-Sik
    Xu, Tao
    Lee, Young
    Kim, Nam-Hee
    Kim, Yeon-Jung
    Kim, Jeong-Min
    Cho, Sang Yun
    Kim, Kwang-Youl
    Nam, Moonsuk
    Adamski, Jerzy
    Suhre, Karsten
    Rathmann, Wolfgang
    Peters, Annette
    Wang-Sattler, Rui
    Han, Bok-Ghee
    Kim, Bong-Jo
    METABOLOMICS, 2016, 12 (12)
  • [39] Utilizing immunoaffinity chromatography (IAC) cross-reactivity in GC-MS/MS exemplified at the measurement of prostaglandin E1 in human plasma using prostaglandin E2-specific IAC columns
    Tsikas, Dimitrios
    Suchy, Maria-Theresia
    Toedter, Klaus
    Heeren, Joerg
    Scheja, Ludger
    JOURNAL OF CHROMATOGRAPHY B-ANALYTICAL TECHNOLOGIES IN THE BIOMEDICAL AND LIFE SCIENCES, 2016, 1021 : 101 - 107
  • [40] Type 2 Diabetes Mellitus and its comorbidity, Alzheimer's disease: Identifying critical microRNA using machine learning
    Alamro, Hind
    Bajic, Vladan
    Macvanin, Mirjana T.
    Isenovic, Esma R.
    Gojobori, Takashi
    Essack, Magbubah
    Gao, Xin
    FRONTIERS IN ENDOCRINOLOGY, 2023, 13