Sign-changing solutions of boundary value problems for semilinear Δγ -Laplace equations

被引:2
作者
Duong Trong Luyen [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2020年 / 143卷
关键词
Delta(gamma) -Laplace equations; critical point theorem; sign-changing solutions; boundary value problems; Grushin operator; NODAL SOLUTIONS; CRITICAL-POINTS; EXISTENCE;
D O I
10.4171/RSMUP/42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the multiplicity of weak solutions to the boundary value problem {- G(alpha)u = g(x, y, u) + f(x , y, u) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain with smooth boundary in R-N (N >= 2), alpha is an element of N, g(x, y, xi), f (x, y, xi ) are Caratheodory functions and G(alpha) is the Grushin operator. We use the lower bounds of eigenvalues and an abstract theory on sign-changing solutions.
引用
收藏
页码:113 / 134
页数:22
相关论文
共 37 条
[11]   A sign-changing solution for a superlinear Dirichlet problem [J].
Castro, A ;
Cossio, J ;
Neuberger, JM .
ROCKY MOUNTAIN JOURNAL OF MATHEMATICS, 1997, 27 (04) :1041-1053
[12]   Lower bounds of eigenvalues for a class of bi-subelliptic operators [J].
Chen, Hua ;
Zhou, Yifu .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2017, 262 (12) :5860-5879
[13]   Lower bounds of Dirichlet eigenvalues for some degenerate elliptic operators [J].
Chen, Hua ;
Luo, Peng .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2015, 54 (03) :2831-2852
[14]  
Chen ST, 2016, ELECTRON J DIFFER EQ
[15]  
Dipierro S., 2017, FRACTIONAL ELLIPTIC, V15
[16]   On the existence of multiple solutions to boundary value problems for semilinear elliptic degenerate operators [J].
Duong Trong Luyen ;
Nguyen Minh Tri .
COMPLEX VARIABLES AND ELLIPTIC EQUATIONS, 2019, 64 (06) :1050-1066
[17]   Existence of infinitely many solutions for semilinear degenerate Schrodinger equations [J].
Duong Trong Luyen ;
Nguyen Mirth Tri .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2018, 461 (02) :1271-1286
[18]   Global attractor of the Cauchy problem for a semilinear degenerate damped hyperbolic equation involving the Grushin operator [J].
Duong Trong Luyen ;
Nguyen Minh Tri .
ANNALES POLONICI MATHEMATICI, 2016, 117 (02) :141-161
[19]   AN EMBEDDING THEOREM FOR SOBOLEV SPACES RELATED TO NON-SMOOTH VECTOR-FIELDS AND HARNACK INEQUALITY [J].
FRANCHI, B ;
LANCONELLI, E .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 1984, 9 (13) :1237-1264
[20]   On semilinear Δλ-Laplace equation [J].
Kogoj, Alessia E. ;
Lanconelli, Ermanno .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 2012, 75 (12) :4637-4649