Sign-changing solutions of boundary value problems for semilinear Δγ -Laplace equations

被引:2
作者
Duong Trong Luyen [1 ,2 ]
机构
[1] Ton Duc Thang Univ, Inst Computat Sci, Div Computat Math & Engn, Ho Chi Minh City, Vietnam
[2] Ton Duc Thang Univ, Fac Math & Stat, Ho Chi Minh City, Vietnam
来源
RENDICONTI DEL SEMINARIO MATEMATICO DELLA UNIVERSITA DI PADOVA | 2020年 / 143卷
关键词
Delta(gamma) -Laplace equations; critical point theorem; sign-changing solutions; boundary value problems; Grushin operator; NODAL SOLUTIONS; CRITICAL-POINTS; EXISTENCE;
D O I
10.4171/RSMUP/42
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the multiplicity of weak solutions to the boundary value problem {- G(alpha)u = g(x, y, u) + f(x , y, u) in Omega, u = 0 on partial derivative Omega, where Omega is a bounded domain with smooth boundary in R-N (N >= 2), alpha is an element of N, g(x, y, xi), f (x, y, xi ) are Caratheodory functions and G(alpha) is the Grushin operator. We use the lower bounds of eigenvalues and an abstract theory on sign-changing solutions.
引用
收藏
页码:113 / 134
页数:22
相关论文
共 37 条
[1]  
Ambrosetti A., 1973, Journal of Functional Analysis, V14, P349, DOI 10.1016/0022-1236(73)90051-7
[2]  
Anh C. T., 2016, COMPLEX VAR ELLIPTIC, V61, P137
[3]  
[Anonymous], 1970, Mat. Sb. (N.S.)
[4]   A PERTURBATION METHOD IN CRITICAL-POINT THEORY AND APPLICATIONS [J].
BAHRI, A ;
BERESTYCKI, H .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 1981, 267 (01) :1-32
[5]   Existence of least energy positive, negative and nodal solutions for a class of p&q-problems with potentials vanishing at infinity [J].
Barile, Sara ;
Figueiredo, Giovany Malcher .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2015, 427 (02) :1205-1233
[6]   Partial symmetry of least energy nodal solutions to some variational problems [J].
Bartsch, T ;
Weth, T ;
Willew, M .
JOURNAL D ANALYSE MATHEMATIQUE, 2005, 96 (1) :1-18
[7]   Three nodal solutions of singularly perturbed elliptic equations on domains without topology [J].
Bartsch, T ;
Weth, T .
ANNALES DE L INSTITUT HENRI POINCARE-ANALYSE NON LINEAIRE, 2005, 22 (03) :259-281
[8]   Sign changing solutions of superlinear Schrodinger equations [J].
Bartsch, T ;
Liu, ZL ;
Weth, T .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2004, 29 (1-2) :25-42
[9]  
BERESTYCKI H, 1983, ARCH RATION MECH AN, V82, P313
[10]   ON A CHARACTERIZATION OF FLOW-INVARIANT SETS [J].
BREZIS, H .
COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 1970, 23 (02) :261-&