Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites Part II: Higher-order constitutive properties and application cases

被引:38
作者
Bacca, M. [1 ]
Bigoni, D. [1 ]
Dal Corso, F. [1 ]
Veber, D. [1 ]
机构
[1] Univ Trento, Dept Civil Environm & Mech Engn, I-38123 Trento, Italy
关键词
Dilute distribution of spherical and circular inclusions; n-Polygonal holes; Higher-order elasticity; Effective non-local continuum; Composite materials; MODULI;
D O I
10.1016/j.ijsolstr.2013.08.016
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
Starting from a Cauchy elastic composite with a dilute suspension of randomly distributed inclusions and characterized at first-order by a certain discrepancy tensor (see part I of the present article), it is shown that the equivalent second-gradient Mindlin elastic solid: (i) is positive definite only when the discrepancy tensor is negative defined; (ii) the non-local material symmetries are the same of the discrepancy tensor, and (iii) the non-local effective behaviour is affected by the shape of the RVE, which does not influence the first-order homogenized response. Furthermore, explicit derivations of non-local parameters from heterogeneous Cauchy elastic composites are obtained in the particular cases of: (a) circular cylindrical and spherical isotropic inclusions embedded in an isotropic matrix, (b) n-polygonal cylindrical voids in an isotropic matrix, and (c) circular cylindrical voids in an orthotropic matrix. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4020 / 4029
页数:10
相关论文
共 18 条
[1]  
Aleksandrov K.S., 1968, IZV AN SSSR GEOL, V6, P17
[2]   Strain gradient elastic homogenization of bidimensional cellular media [J].
Auffray, N. ;
Bouchet, R. ;
Brechet, Y. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2010, 47 (13) :1698-1710
[3]   Mindlin second-gradient elastic properties from dilute two-phase Cauchy-elastic composites. Part I: Closed form expression for the effective higher-order constitutive tensor [J].
Bacca, M. ;
Bigoni, D. ;
Dal Corso, F. ;
Veber, D. .
INTERNATIONAL JOURNAL OF SOLIDS AND STRUCTURES, 2013, 50 (24) :4010-4019
[4]   Analytical derivation of Cosserat moduli via homogenization of heterogeneous elastic materials [J].
Bigoni, D. ;
Drugan, W. J. .
JOURNAL OF APPLIED MECHANICS-TRANSACTIONS OF THE ASME, 2007, 74 (04) :741-753
[5]   Decomposition of the elastic tensor and geophysical applications [J].
Browaeys, JT ;
Chevrot, S .
GEOPHYSICAL JOURNAL INTERNATIONAL, 2004, 159 (02) :667-678
[6]   THERMODYNAMIC RESTRICTIONS ON THE ELASTIC-CONSTANTS OF BONE [J].
COWIN, SC ;
VANBUSKIRK, WC .
JOURNAL OF BIOMECHANICS, 1986, 19 (01) :85-87
[7]   THE DETERMINATION OF THE ELASTIC FIELD OF AN ELLIPSOIDAL INCLUSION, AND RELATED PROBLEMS [J].
ESHELBY, JD .
PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL AND PHYSICAL SCIENCES, 1957, 241 (1226) :376-396
[8]  
Gauthier R.D., 1982, MECH MICROPOLAR MEDI, P395, DOI DOI 10.1142/9789812797247_0007
[9]   CORRECTION [J].
HASHIN, Z .
JOURNAL OF APPLIED MECHANICS, 1965, 32 (01) :219-+
[10]  
HASHIN Z, 1959, NONHOMOGENEITY ELAST, P463