Erdos-Renyi laws for dynamical systems

被引:10
作者
Denker, Manfred [1 ]
Nicol, Matthew [2 ]
机构
[1] Penn State Univ, Dept Math, University Pk, PA 16802 USA
[2] Univ Houston, Dept Math, Houston, TX 77204 USA
来源
JOURNAL OF THE LONDON MATHEMATICAL SOCIETY-SECOND SERIES | 2013年 / 87卷
基金
美国国家科学基金会;
关键词
NONUNIFORMLY HYPERBOLIC SYSTEMS; LARGE DEVIATIONS; LIMIT-THEOREMS; LARGE NUMBERS; MAPS; INTERVAL;
D O I
10.1112/jlms/jds060
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We establish Erdos-Renyi limit laws for Lipschitz observations on a class of non-uniformly expanding dynamical systems, including logistic-like maps. These limit laws give the maximal average of a time series over a time window of logarithmic length. We also give results on maximal averages of a time series arising from Holder observations on intermittent-type maps over a time window of polynomial length. We consider the rate of convergence in the limit law for subshifts of finite type and establish a one-sided rate bound for Gibbs-Markov maps.
引用
收藏
页码:497 / 508
页数:12
相关论文
共 21 条
[1]  
Aaronson J., 2001, Stoch. Dyn., V1, P193
[2]   ON DEVIATIONS OF THE SAMPLE-MEAN [J].
BAHADUR, RR ;
RAO, RR .
ANNALS OF MATHEMATICAL STATISTICS, 1960, 31 (04) :1015-1027
[3]  
Benedicks M, 2000, ASTERISQUE, P13
[4]  
Bock S. A., 1975, AM MATH SOC, V48, P438
[5]   Almost-sure central limit theorems and the Erdos-Renyi law for expanding maps of the interval [J].
Chazottes, JR ;
Collet, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2005, 25 :419-441
[6]   Statistics of closest return for some non-uniformly hyperbolic systems [J].
Collet, P .
ERGODIC THEORY AND DYNAMICAL SYSTEMS, 2001, 21 :401-420
[7]  
Czorgo M., 1979, ANN PROBAB, V7, P731
[8]   EXACT CONVERGENCE RATE IN THE LIMIT-THEOREMS OF ERDOS-RENYI AND SHEPP [J].
DEHEUVELS, P ;
DEVROYE, L ;
LYNCH, J .
ANNALS OF PROBABILITY, 1986, 14 (01) :209-223
[9]  
Denker Manfred, 2007, PROBAB MATH STAT-POL, V27, P139
[10]   ON A NEW LAW OF LARGE NUMBERS [J].
ERDOS, P ;
RENYI, A .
JOURNAL D ANALYSE MATHEMATIQUE, 1970, 23 :103-&