Equivalence of Fourth Order Boundary Value Problems and Matrix Eigenvalue Problems
被引:18
作者:
Ao, Ji-jun
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R ChinaInner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
Ao, Ji-jun
[1
,2
]
Sun, Jiong
论文数: 0引用数: 0
h-index: 0
机构:
Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R ChinaInner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
Sun, Jiong
[1
]
Zettl, Anton
论文数: 0引用数: 0
h-index: 0
机构:
No Illinois Univ, Dept Math, De Kalb, IL 60115 USAInner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
Zettl, Anton
[3
]
机构:
[1] Inner Mongolia Univ, Sch Math Sci, Hohhot 010021, Peoples R China
[2] Inner Mongolia Univ Technol, Coll Sci, Hohhot 010051, Peoples R China
[3] No Illinois Univ, Dept Math, De Kalb, IL 60115 USA
Boundary value problems;
matrix representations;
eigenvalues;
D O I:
10.1007/s00025-011-0219-5
中图分类号:
O29 [应用数学];
学科分类号:
070104 ;
摘要:
We show that a class of regular self-adjoint fourth order boundary value problems (BVPs) is equivalent to a certain class of matrix problems. Conversely, for any given matrix problem in this class, there exist fourth order self-adjoint BVPs which are equivalent to the given matrix problem. Equivalent here means that they have exactly the same spectrum.
引用
收藏
页码:581 / 595
页数:15
相关论文
共 13 条
[1]
[Anonymous], 1968, LINEAR DIFFERENTIAL
[2]
Ao J.J., 2011, LINEAR ALGE IN PRESS
[3]
Atkinson FV., 1964, Discrete and Continuous Boundary Value Problems