Assistive Control System for Upper Limb Rehabilitation Robot

被引:81
作者
Chen, Sung-Hua [1 ]
Lien, Wei-Ming [1 ]
Wang, Wei-Wen [1 ]
Lee, Guan-De [1 ]
Hsu, Li-Chun [1 ]
Lee, Kai-Wen [1 ]
Lin, Sheng-Yen [1 ]
Lin, Chia-Hsun [1 ]
Fu, Li-Chen [1 ,2 ]
Lai, Jin-Shin [3 ,4 ]
Luh, Jer-Junn [3 ,4 ]
Chen, Wen-Shiang [3 ,4 ]
机构
[1] Natl Taiwan Univ, Dept Elect Engn, Taipei 10617, Taiwan
[2] Natl Taiwan Univ, Dept Comp Sci & Informat Engn, Taipei 10617, Taiwan
[3] Natl Taiwan Univ, Dept Phys Med & Rehabil, Taipei 10617, Taiwan
[4] NTU Hosp, Taipei 10617, Taiwan
关键词
Assistive control; exoskeleton; rehabilitation robotics; upper extremity; ARM; STROKE;
D O I
10.1109/TNSRE.2016.2532478
中图分类号
R318 [生物医学工程];
学科分类号
0831 ;
摘要
This paper presents an assistive control system with a special kinematic structure of an upper limb rehabilitation robot embedded with force/torque sensors. A dynamic human model integrated with sensing torque is used to simulate human interaction under three rehabilitation modes: active mode, assistive mode, and passive mode. The hereby proposed rehabilitation robot, called NTUH-ARM, provides 7 degree-of-freedom (DOF) motion and runs subject to an inherent mapping between the 7 DOFs of the robot arm and the 4 DOFs of the human arm. The Lyapunov theory is used to analyze the stability of the proposed controller design. Clinical trials have been conducted with six patients, one of which acts as a control. The results of these experiments are positive and STREAM assessment by physical therapists also reveals promising results.
引用
收藏
页码:1199 / 1209
页数:11
相关论文
共 24 条
[1]  
[Anonymous], 1955, WRIGHT PATTERN AIR F
[2]  
Bayona Nestor A, 2005, Top Stroke Rehabil, V12, P58
[3]  
Benno W. H., 2007, BIOMECHANICS MUSCULO
[4]   REPETITIVE TRAINING OF ISOLATED MOVEMENTS IMPROVES THE OUTCOME OF MOTOR REHABILITATION OF THE CENTRALLY PARETIC HAND [J].
BUTEFISCH, C ;
HUMMELSHEIM, H ;
DENZLER, P ;
MAURITZ, KH .
JOURNAL OF THE NEUROLOGICAL SCIENCES, 1995, 130 (01) :59-68
[5]   Development of an Exoskeleton Haptic Interface for Virtual Task Training [J].
Carignan, Craig ;
Tang, Jonathan ;
Roderick, Stephen .
2009 IEEE-RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS, 2009, :3697-3702
[6]   Estimating Physical Assistance Need Using a Musculoskeletal Model [J].
Carmichael, Marc G. ;
Liu, Dikai .
IEEE TRANSACTIONS ON BIOMEDICAL ENGINEERING, 2013, 60 (07) :1912-1919
[7]   The effect of the GENTLE/s robot-mediated therapy system on arm function after stroke [J].
Coote, Susan ;
Murphy, Brendan ;
Harwin, William ;
Stokes, Emma .
CLINICAL REHABILITATION, 2008, 22 (05) :395-405
[8]   Path Control: A Method for Patient-Cooperative Robot-Aided Gait Rehabilitation [J].
Duschau-Wicke, Alexander ;
von Zitzewitz, Joachim ;
Caprez, Andrea ;
Luenenburger, Lars ;
Riener, Robert .
IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, 2010, 18 (01) :38-48
[9]  
Emken JL, 2005, INT C REHAB ROBOT, P307
[10]   Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery [J].
Hogan, Neville ;
Krebs, Hermano I. ;
Rohrer, Brandon ;
Palazzolo, Jerome J. ;
Dipietro, Laura ;
Fasoli, Susan E. ;
Stein, Joel ;
Hughes, Richard ;
Frontera, Walter R. ;
Lynch, Daniel ;
Volpe, Bruce T. .
JOURNAL OF REHABILITATION RESEARCH AND DEVELOPMENT, 2006, 43 (05) :605-618