A study of Inkeri's class number formula

被引:1
作者
Agoh, T [1 ]
Taniguchi, T [1 ]
机构
[1] Tokyo Univ Sci, Dept Math, Noda, Chiba 2788510, Japan
关键词
Inkeri's matrix; cyclotomic field; class number formula; Stickelberger ideal;
D O I
10.1016/j.exmath.2005.06.002
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let p be an odd prime and Q(zeta(p)) be the cyclotomic field defined by a primitive pth root of unity zeta(p). It is well-known that the relative class number h(p) of Q(zeta(p)) can be expressed by means of the determinant of Inkeri's matrix. The main purpose of this paper is to study Inkeri's class number formula from the viewpoints of bases of Stickelberger ideals in a certain group ring and some special polynomial values. (c) 2005 Elsevier GmbH. All fights reserved.
引用
收藏
页码:53 / 79
页数:27
相关论文
共 13 条
[1]  
CARLITZ L, 1955, P AM MATH SOC, V6, P265
[2]  
FUCHS P, 1997, TATRA MOUNT MATH PUB, V11, P121
[3]   Inkeri's determinant for an imaginary abelian number field [J].
Hirabayashi, M .
ARCHIV DER MATHEMATIK, 2002, 79 (03) :175-181
[4]  
INKERI K, 1955, ANN ACAD SCI FENN A, V199, P1
[5]   A CLASS NUMBER FORMULA FOR CYCLOTOMIC FIELDS [J].
IWASAWA, K .
ANNALS OF MATHEMATICS, 1962, 76 (01) :171-&
[6]   Formulae for the relative class number of an imaginary abelian field in the form of a determinant [J].
Kucera, R .
NAGOYA MATHEMATICAL JOURNAL, 2001, 163 :167-191
[7]  
LEHMER DH, 1977, MATH COMPUT, V31, P599, DOI 10.1090/S0025-5718-1977-0432589-6
[8]  
LEPISTO T, 1966, ANN ACAD SCI FENN A, V387, P1
[9]  
Ribenboim P, 2001, UNIVERSITEX
[10]   STICKELBERGER IDEAL AND CIRCULAR UNITS OF A CYCLOTOMIC FIELD [J].
SINNOTT, W .
ANNALS OF MATHEMATICS, 1978, 108 (01) :107-134