Biomimetic Nanoarchitectures for Light Harvesting: Self-Assembly of Pyropheophorbide-Peptide Conjugates

被引:14
|
作者
Meneghin, Elena [1 ]
Biscaglia, Francesca [1 ]
Volpato, Andrea [1 ]
Bolzonello, Luca [1 ]
Pedron, Danilo [1 ]
Frezza, Elisa [2 ]
Ferrarini, Alberta [1 ]
Gobbo, Marina [1 ]
Collini, Elisabetta [1 ]
机构
[1] Univ Padua, Dept Chem Sci, I-35131 Padua, Italy
[2] Univ Paris, CNRS, CiTCoM, F-75006 Paris, France
来源
JOURNAL OF PHYSICAL CHEMISTRY LETTERS | 2020年 / 11卷 / 19期
关键词
2-DIMENSIONAL ELECTRONIC SPECTROSCOPY; DYNAMICS; ENERGY; COHERENCE; WATER; CHROMOPHORES; EXCITONS; REVEALS; SPECTRA; GROMACS;
D O I
10.1021/acs.jpclett.0c02138
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The biological light-harvesting process offers an unlimited source of inspiration. The high level of control, adaptation capability, and efficiency challenge humankind to create artificial biomimicking nanoarchitectures with the same performances to respond to our energy needs. Here, in the extensive search for design principles at the base of efficient artificial light harvesters, an approach based on self-assembly of pigment-peptide conjugates is proposed. The solvent-driven and controlled aggregation of the peptide moieties promotes the formation of a dense network of interacting pigments, giving rise to an excitonic network characterized by intense and spectrally wide absorption bands. The ultrafast dynamics of the nanosystems studied through two-dimensional electronic spectroscopy reveals that the excitation energy is funneled in an ultrafast time range (hundreds of femtoseconds) to a manifold of long-living dark states, thus suggesting the considerable potentiality of the systems as efficient harvesters.
引用
收藏
页码:7972 / 7980
页数:9
相关论文
共 50 条
  • [41] Synthesis and Self-Assembly of Oligo(p-phenylenevinylene) Peptide Conjugates in Water
    Mba, Miriam
    Moretto, Alessandro
    Armelao, Lidia
    Crisma, Marco
    Toniolo, Claudio
    Maggini, Michele
    CHEMISTRY-A EUROPEAN JOURNAL, 2011, 17 (07) : 2044 - 2047
  • [42] Biomimetic self-assembly of subcellular structures
    Yang, Shuying
    Jiang, Lingxiang
    CHEMICAL COMMUNICATIONS, 2020, 56 (60) : 8342 - 8354
  • [43] COLL 440-Programmable self-assembly of polymer-peptide conjugates
    Kuehnle, Hans
    Boerner, Hans G.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 238
  • [44] Controlling and imaging biomimetic self-assembly
    Aliprandi A.
    Mauro M.
    De Cola L.
    Nature Chemistry, 2016, 8 (1) : 10 - 15
  • [45] Effects of external force fields on peptide self-assembly and biomimetic silica synthesis
    Yu, Jun
    Wang, Qinrong
    Zhang, Xin
    APPLIED SURFACE SCIENCE, 2014, 311 : 799 - 807
  • [46] Controlling and imaging biomimetic self-assembly
    Aliprandi, Alessandro
    Mauro, Matteo
    De Cola, Luisa
    NATURE CHEMISTRY, 2016, 8 (01) : 10 - 15
  • [47] Assembly of Artificial Light-Harvesting Systems Based on Supramolecular Self-Assembly Metallogels
    Ma, Xinxian
    Wang, Yipei
    Lai, Yingshan
    Ren, Tianqi
    Tang, Jiahong
    Gao, Yang
    Geng, Yutao
    Zhang, Jiali
    Yue, Jinlong
    CHEMISTRYSELECT, 2022, 7 (37):
  • [48] Light-driven dissipative self-assembly of a peptide hydrogel
    Liu, Mengmeng
    Creemer, Cassidy N.
    Reardon, Thomas J.
    Parquette, Jon R.
    CHEMICAL COMMUNICATIONS, 2021, 57 (100) : 13776 - 13779
  • [49] Allosteric Self-Assembly of Coordinating Terthiophene Amphiphile for Triggered Light Harvesting
    Huang, Tian
    Zhu, Zhiyang
    Xue, Rongrong
    Wu, Tongyue
    Liao, Peilong
    Liu, Zeyu
    Xiao, Yunlong
    Huang, Jianbin
    Yan, Yun
    LANGMUIR, 2018, 34 (20) : 5935 - 5942
  • [50] Self-assembly of pentameric porphyrin light-harvesting antennae complexes
    Haycock, Richard A.
    Yartsev, Arkady
    Michelsen, Ulrike
    Sundstrom, Villy
    Hunter, Christopher A.
    Angewandte Chemie (International Edition in English), 2000, 39 (20): : 3616 - 3619