Transcendence of Sturmian or morphic continued fractions

被引:52
作者
Allouche, JP [1 ]
Davison, JL [1 ]
Queffélec, M [1 ]
Zamboni, LQ [1 ]
机构
[1] Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
D O I
10.1006/jnth.2001.2669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the continued fraction expansion of a positive irrational real number takes only two values, and begins with arbitrary long blocks which are "almost squares," then this number is either quadratic or transcendental. This result applies in particular to real numbers whose partial quotients form a Sturmian (or quasi-Sturmian) sequence, or are given by the sequence ( 1 +([n alpha] mod 2))(n much greater than0), or are a "repetitive" fixed point of a binary morphism satisfying some technical conditions. (C) 2001 Academic Press.
引用
收藏
页码:39 / 66
页数:28
相关论文
共 58 条
[31]  
FLOR P, 1961, ABH MATH SEM HAMBURG, V25, P62
[32]  
Gottschalk W. H., 1963, Trans. Amer. Math. Soc., V109, P467
[33]   A note on the metrical theory of continued fractions [J].
Harman, G ;
Wong, KC .
AMERICAN MATHEMATICAL MONTHLY, 2000, 107 (09) :834-837
[34]  
HEINIS A, IN PRESS J THEOR NOM
[35]  
HOLTON C, UNPUB OVERLAPS STURM
[36]   Fractional powers in Sturmian words [J].
Justin, J ;
Pirillo, G .
THEORETICAL COMPUTER SCIENCE, 2001, 255 (1-2) :363-376
[37]  
Khintchine A, 1949, CONTINUED FRACTIONS, V2nd
[38]  
Knuth D. E., 1977, SIAM Journal on Computing, V6, P323, DOI 10.1137/0206024
[39]  
LAIRDET P, 2000, J THEOR NOMBRES BORD, V12, P37
[40]  
Levy P., 1936, COMPOS MATH, V3, P286