Transcendence of Sturmian or morphic continued fractions

被引:52
作者
Allouche, JP [1 ]
Davison, JL [1 ]
Queffélec, M [1 ]
Zamboni, LQ [1 ]
机构
[1] Univ Paris 11, CNRS, LRI, F-91405 Orsay, France
基金
美国国家科学基金会;
关键词
D O I
10.1006/jnth.2001.2669
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We prove, using a theorem of W. Schmidt, that if the sequence of partial quotients of the continued fraction expansion of a positive irrational real number takes only two values, and begins with arbitrary long blocks which are "almost squares," then this number is either quadratic or transcendental. This result applies in particular to real numbers whose partial quotients form a Sturmian (or quasi-Sturmian) sequence, or are given by the sequence ( 1 +([n alpha] mod 2))(n much greater than0), or are a "repetitive" fixed point of a binary morphism satisfying some technical conditions. (C) 2001 Academic Press.
引用
收藏
页码:39 / 66
页数:28
相关论文
共 58 条
  • [1] ALESSANDRI P, 1995, UNPUB CLASSIFICATION
  • [2] ALESSANDRI P, 1996, THESIS MARSEILLE
  • [3] ALLOUCHE JP, 1986, CR ACAD SCI II, V302, P1135
  • [4] A RELATIVE OF THE THUE-MORSE SEQUENCE
    ALLOUCHE, JP
    ARNOLD, A
    BERSTEL, J
    BRLEK, S
    JOCKUSCH, W
    PLOUFFE, S
    SAGAN, BE
    [J]. DISCRETE MATHEMATICS, 1995, 139 (1-3) : 455 - 461
  • [5] Algebraic irrational binary numbers cannot be fixed points of non-trivial constant length or primitive morphisms
    Allouche, JP
    Zamboni, LQ
    [J]. JOURNAL OF NUMBER THEORY, 1998, 69 (01) : 119 - 124
  • [6] [Anonymous], QUASICRYSTALS
  • [7] [Anonymous], ENSEIGNEMENT MATH
  • [8] [Anonymous], 1876, MESSENGER MATH
  • [9] GEOMETRIC REPRESENTATION OF SEQUENCES OF COMPLEXITY 2N+1
    ARNOUX, P
    RAUZY, G
    [J]. BULLETIN DE LA SOCIETE MATHEMATIQUE DE FRANCE, 1991, 119 (02): : 199 - 215
  • [10] AXEL F, 1986, J PHYSIQUE S7, V47