Integrins control dendritic spine plasticity in hippocampal neurons through NMDA receptor and Ca2+/calmodulin-dependent protein kinase II-mediated actin reorganization

被引:171
作者
Shi, Y [1 ]
Ethell, IM [1 ]
机构
[1] Univ Calif Riverside, Div Biomed Sci, Riverside, CA 92521 USA
关键词
actin; dendritic spines; hippocampal neurons; integrin; NMDAR; CaMKII;
D O I
10.1523/JNEUROSCI.4091-05.2006
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
The formation of dendritic spines during development and their structural plasticity in the adult brain are critical aspects of synaptogenesis and synaptic plasticity. Many different factors and proteins have been shown to control dendritic spine development and remodeling (Ethell and Pasquale, 2005). The extracellular matrix (ECM) components and their cell surface receptors, integrins, have been found in the vicinity of synapses and shown to regulate synaptic efficacy and play an important role in long-term potentiation (Bahr et al., 1997; Chavis and Westbrook, 2001; Chan et al., 2003; Lin et al., 2003; Bernard-Trifilo et al., 2005). Although molecular mechanisms by which integrins affect synaptic efficacy have begun to emerge, their role in structural plasticity is poorly understood. Here, we show that integrins are involved in spine remodeling in cultured hippocampal neurons. The treatment of 14 d in vitro hippocampal neurons with arginine-glycine-aspartate (RGD)-containing peptide, an established integrin ligand, induced elongation of existing dendritic spines and promoted formation of new filopodia. These effects were also accompanied by integrin-dependent actin reorganization and synapse remodeling, which were partially inhibited by function-blocking antibodies against beta 1 and beta 3 integrins. This actin reorganization was blocked with the NMDA receptor (NMDAR) antagonist MK801 [(+)-5-methyl-10,11-dihydro-5H-dibenzo[a,d] cyclohepten-5,10-imine hydrogen maleate]. The Ca2+/calmodulin-dependent protein kinase II (CaMKII) inhibitor KN93 (N-[2-[N-(4-chlorocinnamyl)-N-methylaminomethyl] phenyl]-N-(2-hydroxyethyl)-4-methoxybenzenesulfonamide) also suppressed RGD-induced actin reorganization and synapse remodeling. Our findings show that integrins control ECM-mediated spine remodeling in hippocampal neurons through NMDAR/CaMKII-dependent actin reorganization.
引用
收藏
页码:1813 / 1822
页数:10
相关论文
共 68 条
[1]  
Aplin AE, 1998, PHARMACOL REV, V50, P197
[2]  
Bahr BA, 1997, J NEUROSCI, V17, P1320
[3]   Integrin signaling cascades are operational in adult hippocampal synapses and modulate NMDA receptor physiology [J].
Bernard-Trifilo, JA ;
Kramár, EA ;
Torp, R ;
Lin, CY ;
Pineda, EA ;
Lynch, G ;
Gall, CM .
JOURNAL OF NEUROCHEMISTRY, 2005, 93 (04) :834-849
[4]   Polarized distribution of α5 integrin in dendrites of hippocampal and cortical neurons [J].
Bi, XN ;
Lynch, G ;
Zhou, J ;
Gall, CM .
JOURNAL OF COMPARATIVE NEUROLOGY, 2001, 435 (02) :184-193
[5]   Kinetic regulation of β3 integrin tyrosine phosphorylation [J].
Blystone, SD .
JOURNAL OF BIOLOGICAL CHEMISTRY, 2002, 277 (49) :46886-46890
[6]   PERINEURONAL NETS PROVIDE A POLYANIONIC, GLIA-ASSOCIATED FORM OF MICROENVIRONMENT AROUND CERTAIN NEURONS IN MANY PARTS OF THE RAT-BRAIN [J].
BRUCKNER, G ;
BRAUER, K ;
HARTIG, W ;
WOLFF, JR ;
RICKMANN, MJ ;
DEROUICHE, A ;
DELPECH, B ;
GIRARD, N ;
OERTEL, WH ;
REICHENBACH, A .
GLIA, 1993, 8 (03) :183-200
[7]   Spine architecture and synaptic plasticity [J].
Carlisle, HJ ;
Kennedy, MB .
TRENDS IN NEUROSCIENCES, 2005, 28 (04) :182-187
[8]   Integrin requirement for hippocampal synaptic plasticity and spatial memory [J].
Chan, CS ;
Weeber, EJ ;
Kurup, S ;
Sweatt, JD ;
Davis, RL .
JOURNAL OF NEUROSCIENCE, 2003, 23 (18) :7107-7116
[9]   Integrins mediate functional pre- and postsynaptic maturation at a hippocampal synapse [J].
Chavis, P ;
Westbrook, G .
NATURE, 2001, 411 (6835) :317-321
[10]   Evidence that integrins contribute to multiple stages in the consolidation of long term potentiation in rat hippocampus [J].
Chun, D ;
Gall, CM ;
Bi, X ;
Lynch, G .
NEUROSCIENCE, 2001, 105 (04) :815-829