Energy Estimates on Existence of Extremals for Trudinger-Moser Inequalities

被引:1
作者
Wang, Ya Min [1 ]
机构
[1] Renmin Univ China, Sch Math, Beijing 100872, Peoples R China
关键词
Trudinger-Moser inequality; energy estimate; extremal function; L-P NORM; SHARP FORM; CRITICAL-POINTS;
D O I
10.1007/s10114-020-9528-5
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let Omega be a smooth bounded domain in R2, W 1,2 0 (Omega) be the standard Sobolev space. By the method of energy estimate developed by Malchiodi-Martinazzi (J. Eur. Math. Soc., 16, 893-908 (2014)), Mancini-Martinazzi (Calc. Var. Partial Differential Equations, 56, 94 (2017)) and ManciniThizy (J. Differential Equations, 266, 1051-1072 (2019)), we reprove the results of Carleson-Chang (Bull. Sci. Math., 110, 113-127 (1986)), Flucher (Comment. Math. Helv., 67, 471-497 (1992)), Li (Acta Math. Sin. Engl. Ser., 22, 545-550 (2006)) and Su (J. Math. Inequal., in press). Namely, for any real number alpha >= 1, the supremum sup(v is an element of W01,2(Omega), parallel to del v parallel to 22 <= 4 pi) integral(Omega)(e(v2) - alpha(v2))dx can be achieved by some function v is an element of W-0(1,2)(Omega) with parallel to del v parallel to(2)(2) = 4 pi.
引用
收藏
页码:829 / 841
页数:13
相关论文
共 35 条
[1]   A SHARP INEQUALITY OF MOSER,J. FOR HIGHER-ORDER DERIVATIVES [J].
ADAMS, DR .
ANNALS OF MATHEMATICS, 1988, 128 (02) :385-398
[2]   Global compactness properties of semilinear elliptic equations with critical exponential growth [J].
Adimurthi ;
Struwe, M .
JOURNAL OF FUNCTIONAL ANALYSIS, 2000, 175 (01) :125-167
[3]  
[Anonymous], ARXIV171008811
[4]  
CARLESON L, 1986, B SCI MATH, V110, P113
[5]  
Ding W., 1997, ASIAN J MATH, V1, P230, DOI 10.4310/AJM.1997.v1.n2.a3
[6]   Multibumps analysis in dimension 2: Quantification of blow-up levels [J].
Druet, O .
DUKE MATHEMATICAL JOURNAL, 2006, 132 (02) :217-269
[7]   EXTREMAL-FUNCTIONS FOR THE TRUDINGER-MOSER INEQUALITY IN 2 DIMENSIONS [J].
FLUCHER, M .
COMMENTARII MATHEMATICI HELVETICI, 1992, 67 (03) :471-497
[8]   SHARP BORDERLINE SOBOLEV INEQUALITIES ON COMPACT RIEMANNIAN-MANIFOLDS [J].
FONTANA, L .
COMMENTARII MATHEMATICI HELVETICI, 1993, 68 (03) :415-454
[9]   SYMMETRY AND RELATED PROPERTIES VIA THE MAXIMUM PRINCIPLE [J].
GIDAS, B ;
NI, WM ;
NIRENBERG, L .
COMMUNICATIONS IN MATHEMATICAL PHYSICS, 1979, 68 (03) :209-243
[10]  
Li Y., 2001, J PARTIAL DIFFERENTI, V14, P163