Static friction indeterminacy problems and modeling of stick-slip phenomenon in discrete dynamic systems

被引:0
作者
Zardecki, Dariusz [1 ]
机构
[1] PIMOT, Automot Ind Inst, Warsaw, Poland
关键词
static friction; force indeterminacy; stick-slip; multi-body systems; mathematical modeling; Gauss principle; piecewise linear projections;
D O I
暂无
中图分类号
O3 [力学];
学科分类号
08 ; 0801 ;
摘要
The paper presents a new method of modeling of the friction action in discrete dynamic systems in cases of undetermined distribution of static friction forces. This method is based on the Gauss Principle and the piecewise linear luz (...) and tar (...) projections with their original mathematical apparatus. The derived variable-structure model of a two-body system with three frictional contacts describes the stick-slip phenomenon in detail. The model has an analytical form applicable to standard (without iterations) computational procedures.
引用
收藏
页码:289 / 310
页数:22
相关论文
共 33 条
[1]   A SURVEY OF MODELS, ANALYSIS TOOLS AND COMPENSATION METHODS FOR THE CONTROL OF MACHINES WITH FRICTION [J].
ARMSTRONGHELOUVRY, B ;
DUPONT, P ;
DEWIT, CC .
AUTOMATICA, 1994, 30 (07) :1083-1138
[2]   Computing wrench cones for planar rigid body contact tasks [J].
Balkcom, DJ ;
Trinkle, JC .
INTERNATIONAL JOURNAL OF ROBOTICS RESEARCH, 2002, 21 (12) :1053-1066
[3]  
Baraff D., 1994, Computer Graphics Proceedings. Annual Conference Series 1994. SIGGRAPH 94 Conference Proceedings, P23, DOI 10.1145/192161.192168
[4]  
BARAFF D, 1993, P EUROGRAPHICS 93 ST
[5]   A POSTERIORI ERROR-ESTIMATES FOR THE ADAPTATIVE COMPUTATION OF QUASINEWTONIAN FLOWS [J].
BARANGER, J ;
ELAMRI, H .
ESAIM-MATHEMATICAL MODELLING AND NUMERICAL ANALYSIS-MODELISATION MATHEMATIQUE ET ANALYSE NUMERIQUE, 1991, 25 (01) :31-47
[6]  
Brogliato B., 2002, Appl Mech Rev, V55, P107
[7]   Reflections on the Gauss principle of least constraint [J].
Fan, YY ;
Kalaba, RE ;
Natsuyama, HH ;
Udwadia, FE .
JOURNAL OF OPTIMIZATION THEORY AND APPLICATIONS, 2005, 127 (03) :475-484
[8]   New results on Painleve paradoxes [J].
Génot, F ;
Brogliato, B .
EUROPEAN JOURNAL OF MECHANICS A-SOLIDS, 1999, 18 (04) :653-677
[9]   Formulation of rigid body systems with nonsmooth and multivalued interactions [J].
Glocker, C .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1997, 30 (08) :4887-4892
[10]  
GLOCKER C, 1993, ARCH APPL MECH, V63, P452