Tuning the ferroelectric-to-paraelectric transition temperature and dipole orientation of group-IV monochalcogenide monolayers

被引:85
作者
Barraza-Lopez, Salvador [1 ,2 ]
Kaloni, Thaneshwor P. [1 ]
Poudel, Shiva P. [1 ]
Kumar, Pradeep [1 ]
机构
[1] Univ Arkansas, Dept Phys, Fayetteville, AR 72701 USA
[2] Univ Arkansas, Inst Nanoscale Sci & Engn, Fayetteville, AR 72701 USA
基金
美国国家科学基金会;
关键词
ELECTRONIC-STRUCTURE; PSEUDOPOTENTIALS; RIPPLES;
D O I
10.1103/PhysRevB.97.024110
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Coordination-related, two-dimensional (2D) structural phase transitions are a fascinating facet of two-dimensional materials with structural degeneracies. Nevertheless, a unified theoretical account of these transitions remains absent, and the following points are established through ab initio molecular dynamics and 2D discrete clock models here: Group-IV monochalcogenide (GeSe, SnSe, SnTe, ... ) monolayers have four degenerate structural ground states, and a phase transition from a threefold coordinated onto a fivefold coordinated structure takes place at finite temperature. On unstrained samples, this phase transition requires lattice parameters to evolve freely. A fundamental energy scale J permits understanding this transition, and numerical results indicate a transition temperature Tc of about 1.41 J. Numerical data provides a relation among the experimental (rhombic) parameter <Delta alpha > [Chang et al., Science 353, 274 (2016)] and T of the form <Delta alpha > = Delta alpha(T = 0)(1 -T/T-c)(beta), with a critical exponent beta similar or equal to 1/3 that coincides with experiment. It is also shown that <Delta alpha > is temperature independent in another theoretical work [Fei et al., Phys. Rev. Lett. 117, 097601 (2016)], and thus incompatible with experiment. T-c and the orientation of the in-plane intrinsic electric dipole can be controlled by moderate uniaxial tensile strain, and a modified discrete clock model describes the transition on strained samples qualitatively. An analysis of out-of-plane fluctuations and a discussion of the need for van der Waals corrections to describe these materials are given too. These results provide an experimentally compatible framework to understand structural phase transitions in 2D materials and their effects on material properties.
引用
收藏
页数:14
相关论文
共 66 条
[1]   Non-Hermitian Luttinger liquids and flux line pinning in planar superconductors -: art. no. P10003 [J].
Affleck, I ;
Hofstetter, W ;
Nelson, DR ;
Shollwöck, U .
JOURNAL OF STATISTICAL MECHANICS-THEORY AND EXPERIMENT, 2004,
[2]  
Allen M. P., 1987, COMPUTER SIMULATION
[3]   Lone pair interactions with coinage metal atoms: Weak van der Waals complexes of the coinage metal atoms with water and ammonia [J].
Antusek, A ;
Urban, M ;
Sadlej, AJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 119 (14) :7247-7262
[4]  
Avouris P., 2017, 2D MAT PROPERTIES DE
[5]   van der Waals forces in density functional theory: a review of the vdW-DF method [J].
Berland, Kristian ;
Cooper, Valentino R. ;
Lee, Kyuho ;
Schroeder, Elsebeth ;
Thonhauser, T. ;
Hyldgaard, Per ;
Lundqvist, Bengt I. .
REPORTS ON PROGRESS IN PHYSICS, 2015, 78 (06)
[6]   Exchange functional that tests the robustness of the plasmon description of the van der Waals density functional [J].
Berland, Kristian ;
Hyldgaard, Per .
PHYSICAL REVIEW B, 2014, 89 (03)
[7]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[8]  
Bobenko AI., 2008, OBERWOLFACH SEMINARS, V38
[9]   Ripples and Layers in Ultrathin MoS2 Membranes [J].
Brivio, Jacopo ;
Alexander, Duncan T. L. ;
Kis, Andras .
NANO LETTERS, 2011, 11 (12) :5148-5153
[10]   Two- and One-Dimensional Honeycomb Structures of Silicon and Germanium [J].
Cahangirov, S. ;
Topsakal, M. ;
Akturk, E. ;
Sahin, H. ;
Ciraci, S. .
PHYSICAL REVIEW LETTERS, 2009, 102 (23)