On Hypersurfaces in Rn+1 with Bounds on Curvature

被引:12
作者
Delladio, Silvano [1 ]
机构
[1] Univ Trent, Dipartimento Matemat, I-38050 Trento, Italy
关键词
variational problems; direct method; functionals involving surfaces and curvatures; compactness for families of surfaces; hypersurfaces; immersions; generalized curvatures; bounded second fundamental form; Gauss graphs;
D O I
10.1007/BF02921952
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We show that the L P norm of the second fundamental form of hypersurfaces in Rn+1 is very coercive in the GMT setting of Gauss graphs currents, when p exceeds the dimension n. A compactness result for immersed hypersurfaces and its application to a variational problem are provided.
引用
收藏
页码:17 / 42
页数:26
相关论文
共 26 条
[1]  
Adams R. A., 1975, SOBOLEV SPACES
[2]   CURVATURES, FUNCTIONALS, CURRENTS [J].
ANZELLOTTI, G ;
SERAPIONI, R ;
TAMANINI, I .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1990, 39 (03) :617-669
[3]  
Anzellotti G., 1993, ADV GEOMETRIC ANAL C
[4]  
ANZELLOTTI G, 1988, REND SEM MAT U POL T, P47
[5]  
Aubin T., 1982, GRUNDLEHREN MATH WIS, V252
[6]  
Berger M, 1988, DIFFERENTIAL GEOMETR
[7]  
CARMO M. P. D, 1992, Differential geometry of curves and surfaces
[8]  
Delladio S, 1997, J REINE ANGEW MATH, V486, P17
[9]   ORIENTED AND NONORIENTED CURVATURE VARIFOLDS [J].
DELLADIO, S ;
SCIANNA, G .
PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 1995, 125 :63-83
[10]   Minimizing functionals depending on surfaces and their curvatures: A class of variational problems in the setting of generalized Gauss graphs [J].
Delladio, S .
PACIFIC JOURNAL OF MATHEMATICS, 1997, 179 (02) :301-323