Gene expression in response to Cu stress in rice leaves was quantified using DNA microarray (Agilent 22K Rice Oligo Microarray) and real-time PCR technology. Rice plants were grown in hydroponic solutions containing 0.3 (control), 10, 45, or 130 mu M of CuCl2, and Cu accumulation and photosynthesis inhibition were observed in leaves within 1 d of the start of treatment. Microarray analysis flagged 305 Cu-responsive genes, and their expression profile showed that a large proportion of general and defence stress response genes are up-regulated under excess Cu conditions, whereas photosynthesis and transport-related genes are down-regulated. The Cu sensitivity of each Cu-responsive gene was estimated by the median effective concentration value (EC50) and the range of fold-changes (F) under the highest (130 mu M) Cu conditions (Ilog(2)FI(130)). Our results indicate that defence-related genes involved in phytoalexin and lignin biosynthesis were the most sensitive to Cu, and that plant management of abiotic and pathogen stresses has overlapping components, possibly including signal transduction.