An Interleaving Updating Framework of Disparity and Confidence Map for Stereo Matching

被引:2
作者
Shi, Chenbo [1 ]
Wang, Guijin [1 ]
Pei, Xiaokang [1 ]
He, Bei [1 ]
Lin, Xinggang [1 ]
机构
[1] Tsinghua Univ, Dept Elect Engn, Istanbul, Turkey
关键词
stereo matching; message propagation; confidence map; interleaving updating;
D O I
10.1587/transinf.E95.D.1552
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
In this paper, we propose an interleaving updating framework of disparity and confidence map (IUFDCM) for stereo matching to eliminate the redundant and interfere information from unreliable pixels. Compared with other propagation algorithms using matching cost as messages, IUFDCM updates the disparity map and the confidence map in an interleaving manner instead. Based on the Confidence-based Support Window (CSW), disparity map is updated adaptively to alleviate the effect of input parameters. The reassignment for unreliable pixels with larger probability keeps ground truth depending on reliable messages. Consequently, the confidence map is updated according to the previous disparity map and the left-right consistency. The top ranks on Middlebury benchmark corresponding to different error thresholds demonstrate that our algorithm is competitive with the best stereo matching algorithms at present.
引用
收藏
页码:1552 / 1555
页数:4
相关论文
共 50 条
  • [21] Active Disparity Sampling for Stereo Matching With Adjoint Network
    Zhang, Chenghao
    Meng, Gaofeng
    Tian, Kun
    Ni, Bolin
    Xiang, Shiming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2024, 33 : 354 - 365
  • [22] Sliding space-disparity transformer for stereo matching
    Zhibo Rao
    Mingyi He
    Yuchao Dai
    Zhelun Shen
    Neural Computing and Applications, 2022, 34 : 21863 - 21876
  • [23] EFFICIENT STEREO MATCHING BASED ON A NEW CONFIDENCE METRIC
    Lee, Won-Hee
    Kim, Yumi
    Ra, Jong Beom
    2012 PROCEEDINGS OF THE 20TH EUROPEAN SIGNAL PROCESSING CONFERENCE (EUSIPCO), 2012, : 1139 - 1143
  • [24] Learning and Selecting Confidence Measures for Robust Stereo Matching
    Park, Min-Gyu
    Yoon, Kuk-Jin
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2019, 41 (06) : 1397 - 1411
  • [25] A progressive framework for dense stereo matching
    Jia B.
    Liu S.
    Du Z.
    Pattern Recognition and Image Analysis, 2016, 26 (2) : 294 - 301
  • [26] Context pyramidal network for stereo matching regularized by disparity gradients
    Kang, Junhua
    Chen, Lin
    Deng, Fei
    Heipke, Christian
    ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2019, 157 : 201 - 215
  • [27] Dense Disparity Stereo Matching Based on SIFT Feature Point
    Zhang, Guo-yun
    Guo, Long-yuan
    Wu, Jian-hui
    INTERNATIONAL CONFERENCE ON INFORMATION TECHNOLOGY AND MANAGEMENT ENGINEERING (ITME 2014), 2014, : 117 - 120
  • [28] A Multi-Correlation Stereo Matching Network for Disparity Estimation
    Mei, Jianqiang
    Guan, Shengxiao
    2021 PROCEEDINGS OF THE 40TH CHINESE CONTROL CONFERENCE (CCC), 2021, : 8035 - 8039
  • [29] ADStereo: Efficient Stereo Matching With Adaptive Downsampling and Disparity Alignment
    Wang, Yun
    Li, Kunhong
    Wang, Longguang
    Hu, Junjie
    Wu, Dapeng Oliver
    Guo, Yulan
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2025, 34 : 1204 - 1218
  • [30] Insights into Local Stereo Matching: Evaluation of Disparity Refinement Approaches
    Zhang, Kang
    Fang, Yuqiang
    Sun, Lifeng
    Yang, Shiqiang
    2014 IEEE INTERNATIONAL CONFERENCE ON INFORMATION AND AUTOMATION (ICIA), 2014, : 1195 - 1200