DARK SOLITONS, DISPERSIVE SHOCK WAVES, AND TRANSVERSE INSTABILITIES

被引:18
作者
Hoefer, M. A. [1 ]
Ilan, B. [2 ]
机构
[1] N Carolina State Univ, Dept Math, Raleigh, NC 27695 USA
[2] Univ Calif, Sch Nat Sci, Merced, CA 95343 USA
基金
美国国家科学基金会;
关键词
semiclassical regime; traveling waves; vortices; Bose-Einstein condensates; nonlinear topics; KADOMTSEV-PETVIASHVILI EQUATION; BOSE-EINSTEIN CONDENSATE; SOLITARY WAVES; CONVECTIVE INSTABILITIES; SUPERSONIC-FLOW; SYSTEMS; WATER; WEAK; STABILITY; ABSOLUTE;
D O I
10.1137/110834822
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
The nature of transverse instabilities of dark solitons for the (2+1)-dimensional defocusing nonlinear Schrodinger/Gross-Pitaevskii (NLS/GP) equation is considered. Special attention is given to the small (shallow) amplitude regime, which limits to the Kadomtsev Petviashvili (KP) equation. We study analytically and numerically the eigenvalues of the linearized NLS/GP equation. The dispersion relation for shallow solitons is obtained asymptotically beyond the KP limit. This yields (1) the maximal growth rate and associated wavenumber of unstable perturbations and (2) the separatrix between convective and absolute instabilities. The instability properties of the dark soliton are directly related to those of oblique dispersive shock wave (DSW) solutions. Stationary and nonstationary oblique DSWs are constructed analytically and investigated numerically by direct simulations of the NLS/GP equation. It is found that stationary and nonstationary oblique DSWs have the same jump conditions in the shallow and hypersonic regimes. These results have application to controlling nonlinear waves in dispersive media.
引用
收藏
页码:306 / 341
页数:36
相关论文
共 58 条
[31]   Theory of two-dimensional oblique dispersive shock waves in supersonic flow of a superfluid [J].
Hoefer, M. A. ;
Ilan, B. .
PHYSICAL REVIEW A, 2009, 80 (06)
[32]   Piston dispersive shock wave problem [J].
Hoefer, M. A. ;
Ablowitz, M. J. ;
Engels, P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (08)
[33]  
HOEFER MA, 2009, SCHOLARPEDIA, V4, P5562, DOI DOI 10.4249/SCHOLARPEDIA.5562
[34]   ABSOLUTE AND CONVECTIVE INSTABILITIES IN FREE SHEAR LAYERS [J].
HUERRE, P ;
MONKEWITZ, PA .
JOURNAL OF FLUID MECHANICS, 1985, 159 (OCT) :151-168
[35]  
Kadomtsev B. B., 1970, Soviet Physics - Doklady, V15, P539
[36]   Condition for convective instability of dark solitons [J].
Kamchatnov, A. M. ;
Korneev, S. V. .
PHYSICS LETTERS A, 2011, 375 (26) :2577-2580
[37]   Flow of a Bose-Einstein condensate in a quasi-one-dimensional channel under the action of a piston [J].
Kamchatnov, A. M. ;
Korneev, S. V. .
JOURNAL OF EXPERIMENTAL AND THEORETICAL PHYSICS, 2010, 110 (01) :170-182
[38]   Stabilization of solitons generated by a supersonic flow of Bose-Einstein condensate past an obstacle [J].
Kamchatnov, A. M. ;
Pitaevskii, L. P. .
PHYSICAL REVIEW LETTERS, 2008, 100 (16)
[39]   Fourier spectral and wavelet solvers for the incompressible Navier-Stokes equations with volume-penalization: Convergence of a dipole-wall collision [J].
Keetels, G. H. ;
D'Ortona, U. ;
Kramer, W. ;
Clercx, H. J. H. ;
Schneider, K. ;
van Heijst, G. J. F. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 227 (02) :919-945
[40]   Self-focusing and transverse instabilities of solitary waves [J].
Kivshar, YS ;
Pelinovsky, DE .
PHYSICS REPORTS-REVIEW SECTION OF PHYSICS LETTERS, 2000, 331 (04) :118-195