Existence and asymptotic behavior of non-radially symmetric ground states of semilinear singular elliptic equations

被引:23
作者
Goncalves, JV [1 ]
Santos, CA
机构
[1] Univ Brasilia, Dept Matemat, BR-70910900 Brasilia, DF, Brazil
[2] Univ Fed Goias, Dept Matemat, BR-75706220 Catalao, Go, Brazil
关键词
semilinear elliptic equations; ground states; asymptotic behavior; lower-upper solutions;
D O I
10.1016/j.na.2005.09.036
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper deals with the existence and asymptotic behavior of entire positive solutions of the semilinear elliptic equation -Delta u = p(x)f(u) in R-N (N >= 3), where p is nonnegative and locally Holder continuous and f is a positive locally Lipschitz continuous function, singular at 0 in the sense that f (r) (r -> 0)-> infinity. No symmetry is required from p and no monotonicity condition is imposed on f. Arguments for lower and upper solutions are exploited. (c) 2005 Elsevier Ltd. All rights reserved.
引用
收藏
页码:719 / 727
页数:9
相关论文
共 16 条
[1]  
[Anonymous], 1959, ANN SCUOLA NORM-SCI
[2]   REMARKS ON SUBLINEAR ELLIPTIC-EQUATIONS [J].
BREZIS, H ;
OSWALD, L .
NONLINEAR ANALYSIS-THEORY METHODS & APPLICATIONS, 1986, 10 (01) :55-64
[3]   Combined effects of asymptotically linear and singular nonlinearities in bifurcation problems of Lane-Emden-Fowler type [J].
Cîrstea, F ;
Ghergu, M ;
Radulescu, V .
JOURNAL DE MATHEMATIQUES PURES ET APPLIQUEES, 2005, 84 (04) :493-508
[4]  
CIRSTEA F, 1999, J MATH ANAL APPL, V229, P417
[5]  
Crandall M.G., 1977, Commun. Partial. Differ. Equ., V2, P193, DOI DOI 10.1080/03605307708820029
[6]  
DIAZ JI, 1987, CR ACAD SCI I-MATH, V305, P521
[7]  
Dinu T.-L., 2003, RESULTS MATH, V43, P96
[8]  
DINU TL, IN PRESS J MATH ANAL
[9]   ENTIRE SOLUTIONS OF SINGULAR ELLIPTIC-EQUATIONS [J].
EDELSON, AL .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 1989, 139 (02) :523-532
[10]   Sublinear singular elliptic problems with two parameters [J].
Ghergu, M ;
Radulescu, V .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2003, 195 (02) :520-536