Constacyclic codes over finite local Frobenius non-chain rings of length 5 and nilpotency index 4

被引:1
作者
Castillo-Guillen, C. A. [1 ]
Renteria-Marquez, C. [2 ]
机构
[1] Univ Bienestar Benito Juarez Garcia, Dept Math, Tlahuac Ave 6391, Ciudad De Mexico 13360, Mexico
[2] Inst Politecn Nacl, Dept Math, Escuela Super Fis & Matemat, Inst Politecn Nacl Ave S-N, Ciudad De Mexico 07300, Mexico
来源
ANALELE STIINTIFICE ALE UNIVERSITATII OVIDIUS CONSTANTA-SERIA MATEMATICA | 2020年 / 28卷 / 02期
关键词
Chain rings; Commutative finite local rings; Constacyclic codes; Frobenius local rings; NEGACYCLIC CODES;
D O I
10.2478/auom-2020-0020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The family of finite local Frobenius non-chain rings of length 5 and nilpotency index 4 is determined, as a by-product all finite local Frobenius non-chain rings with p(5) elements (p a prime) and nilpotency index 4 are given. And the number and structure of gamma-constacyclic codes over those rings, of length relatively prime to the characteristic of the residue field of the ring, are determined.
引用
收藏
页码:67 / 91
页数:25
相关论文
共 11 条
[1]   Negacyclic codes over the local ring Z4[v]/⟨v2+2v⟩ of oddly even length and their Gray images [J].
Cao, Yuan ;
Cao, Yonglin .
FINITE FIELDS AND THEIR APPLICATIONS, 2018, 52 :67-93
[2]   Duals of constacyclic codes over finite local Frobenius non-chain rings of length 4 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Tapia-Recillas, H. .
DISCRETE MATHEMATICS, 2018, 341 (04) :919-933
[3]   Constacyclic codes over finite local Frobenius non-chain rings with nilpotency index 3 [J].
Castillo-Guillen, C. A. ;
Renteria-Marquez, C. ;
Tapia-Recillas, H. .
FINITE FIELDS AND THEIR APPLICATIONS, 2017, 43 :1-21
[4]   On the structure of cyclic codes over the ring Z2s[u]/⟨uk⟩ [J].
Dinh, Hai Q. ;
Singh, Abhay Kumar ;
Kumar, Pratyush ;
Sriboonchitta, Songsak .
DISCRETE MATHEMATICS, 2018, 341 (08) :2243-2275
[5]   Cyclic and negacyclic codes over finite chain rings [J].
Dinh, HQ ;
López-Permouth, SR .
IEEE TRANSACTIONS ON INFORMATION THEORY, 2004, 50 (08) :1728-1744
[6]  
Dougherty S. T., 2012, DES CODES CRYPTOGR, V63
[7]   THE Z4-LINEARITY OF KERDOCK, PREPARATA, GOETHALS, AND RELATED CODES [J].
HAMMONS, AR ;
KUMAR, PV ;
CALDERBANK, AR ;
SLOANE, NJA ;
SOLE, P .
IEEE TRANSACTIONS ON INFORMATION THEORY, 1994, 40 (02) :301-319
[8]  
Karadeniz S., 2011, DES CODES CRYPTOGR, V58
[9]  
Martinez-Moro E., 2015, CONT MATH, V684, P227
[10]  
McDonald BR, 1974, Finite Rings With Identity