Human Tracking Using a Far-Infrared Sensor Array and a Thermo-Spatial Sensitive Histogram

被引:2
作者
Hosono, Takashi [1 ]
Takahashi, Tomokazu [2 ]
Deguchi, Daisuke [3 ]
Ide, Ichiro [1 ]
Murase, Hiroshi [1 ]
Aizawa, Tomoyoshi [4 ]
Kawade, Masato [4 ]
机构
[1] Nagoya Univ, Grad Sch Informat Sci, Nagoya, Aichi 4648601, Japan
[2] Gifu Shotoku Gakuen Univ, Fac Econ & Informat, Gifu, Japan
[3] Nagoya Univ, Informat & Commun Headquarters, Nagoya, Aichi 4648601, Japan
[4] OMRON Corp, Corp R&D, Kyoto, Japan
来源
COMPUTER VISION - ACCV 2014 WORKSHOPS, PT II | 2015年 / 9009卷
关键词
D O I
10.1007/978-3-319-16631-5_20
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We propose a human body tracking method using a far-infrared sensor array. A far-infrared sensor array captures the spatial distribution of temperature as a low-resolution image. Since it is difficult to identify a person from the low-resolution thermal image, we can avoid privacy issues. Therefore, it is expected to be applied for the analysis of human behaviors in various places. However, it is difficult to accurately track humans because of the lack of information sufficient to describe the feature of the target human body in the low-resolution thermal image. In order to solve this problem, we propose a thermo-spatial sensitive histogram suitable to represent the target in the low-resolution thermal image. Unlike the conventional histograms, in case of the thermo-spatial sensitive histogram, a voting value is weighted depending on the distance to the target's position and the difference from the target's temperature. This histogram allows the accurate tracking by representing the target with multiple histograms and reducing the influence of the background pixels. Based on this histogram, the proposed method tracks humans robustly to occlusions, pose variations, and background clutters. We demonstrate the effectiveness of the method through an experiment using various image sequences.
引用
收藏
页码:262 / 274
页数:13
相关论文
共 18 条
  • [1] Adam A., 2006, IEEE C COMPUTER VISI, V1, P798, DOI [DOI 10.1109/CVPR.2006.256, 10.1109/CVPR.2006.256]
  • [2] Lucas-Kanade 20 years on: A unifying framework
    Baker, S
    Matthews, I
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2004, 56 (03) : 221 - 255
  • [3] Barla A, 2003, 2003 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL 3, PROCEEDINGS, P513
  • [4] Cehovin L, 2011, IEEE I CONF COMP VIS, P1363, DOI 10.1109/ICCV.2011.6126390
  • [5] The Pascal Visual Object Classes (VOC) Challenge
    Everingham, Mark
    Van Gool, Luc
    Williams, Christopher K. I.
    Winn, John
    Zisserman, Andrew
    [J]. INTERNATIONAL JOURNAL OF COMPUTER VISION, 2010, 88 (02) : 303 - 338
  • [6] Human tracking with wireless distributed pyroelectric sensors
    Hao, Qi
    Brady, David J.
    Guenther, Bob D.
    Burchett, John B.
    Shankar, Mohan
    Feller, Steve
    [J]. IEEE SENSORS JOURNAL, 2006, 6 (06) : 1683 - 1696
  • [7] Visual Tracking via Locality Sensitive Histograms
    He, Shengfeng
    Yang, Qingxiong
    Lau, Rynson W. H.
    Wang, Jiang
    Yang, Ming-Hsuan
    [J]. 2013 IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2013, : 2427 - 2434
  • [8] Kwon J, 2009, PROC CVPR IEEE, P1208, DOI 10.1109/CVPRW.2009.5206502
  • [9] Nejhum S.M. Shahed., 2008, Proceedings IEEE Conference on Computer Vision and Pattern Recognition, P1
  • [10] Ohira M, 2011, PROC IEEE MICR ELECT, P708, DOI 10.1109/MEMSYS.2011.5734523