In 1980, I. Morrison proved that slope stability of a vector bundle of rank 2 over a compact Riemann surface implies Chow stability of the projectivization of the bundle with respect to certain polarizations. In a previous work, we generalized Morrison's result to higher rank vector bundles over compact algebraic manifolds of arbitrary dimension that admit a constant scalar curvature metric and have a discrete automorphism group. In this article, we give a simple proof for polarizations O-PE* (d) circle times pi* L-k, where d is a positive integer, k >> 0 and the base manifold is a compact Riemann surface of genus g >= 2.
机构:
Syracuse Univ, Dept Math, Syracuse, NY 13244 USASyracuse Univ, Dept Math, Syracuse, NY 13244 USA
Coman, Dan
Klevtsov, Semyon
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cologne, Inst Theoret Phys, Zulpicher Str 77, D-50937 Cologne, GermanySyracuse Univ, Dept Math, Syracuse, NY 13244 USA
Klevtsov, Semyon
Marinescu, George
论文数: 0引用数: 0
h-index: 0
机构:
Univ Cologne, Math Inst, Weyertal 86-90, D-50931 Cologne, Germany
Romanian Acad, Inst Math Simion Stoilow, Bucharest, RomaniaSyracuse Univ, Dept Math, Syracuse, NY 13244 USA
机构:
Chinese Univ Hong Kong, Dept Math, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Inst Math Sci, Shatin, Hong Kong, Peoples R China
Chen, Yunxia
Leung, Naichung Conan
论文数: 0引用数: 0
h-index: 0
机构:
Chinese Univ Hong Kong, Dept Math, Inst Math Sci, Shatin, Hong Kong, Peoples R ChinaChinese Univ Hong Kong, Dept Math, Inst Math Sci, Shatin, Hong Kong, Peoples R China