共 50 条
Optical and radiative properties of infrared opacifier particles loaded in silica aerogels for high temperature thermal insulation
被引:112
|作者:
Zhao, Jun-Jie
[1
,2
]
Duan, Yuan-Yuan
[1
]
Wang, Xiao-Dong
[3
]
Zhang, Xue-Ren
Han, Yun-He
[2
]
Gao, Ya-Bin
[2
]
Lv, Zhen-Hua
[2
]
Yu, Hai-Tong
[1
]
Wang, Bu-Xuan
[1
]
机构:
[1] Tsinghua Univ, Beijing Key Lab CO2 Utilizat & Reduct Technol, Key Lab Thermal Sci & Power Engn MOE, Beijing 100084, Peoples R China
[2] China Guodian Corp, Guodian Power Dev Co Ltd, Beijing 100101, Peoples R China
[3] North China Elect Power Univ, State Key Lab Alternate Elect Power Syst Renewabl, Beijing 102206, Peoples R China
关键词:
Silica aerogel;
Opacifier;
Complex refractive index;
Extinction coefficient;
Radiative thermal conductivity;
High temperature thermal insulation;
HEAT-TRANSFER;
ORGANIC AEROGELS;
CONDUCTIVITY;
CONSTANTS;
POWDERS;
SCATTERING;
TRANSPORT;
PANELS;
MEDIA;
MODEL;
D O I:
10.1016/j.ijthermalsci.2013.03.020
中图分类号:
O414.1 [热力学];
学科分类号:
摘要:
An inverse model based on the shooting method, Mie theory and the improved Kramers-Kronig (KK) relation was combined with FTIR and Abbe refractometer measurements to calculate the complex refractive indices of various infrared pacifiers. The effects of pacifier sizes, types and shapes were then analyzed based on the Rosseland mean extinction coefficient using Mie theory and anomalous diffraction theory (ADT). This model provides theoretical guidelines for designing materials with optimized parameters, such as size, type and shape of opacifiers, to improve the aerogel thermal insulation at high temperatures. The results show that the optimum diameter of SiC particles to minimize the radiation is 4 gm for T < 400 K and 3 gm for T > 400 K. Carbon black is the optimum opacifier for T < 600 K while SiC is the optimum opacifier to minimize the radiative heat transfer for T > 600 K among the investigated opacifiers of SiC, TiO2, ZrO2, amorphous SiO2 and carbon black. The infrared extinction ability for various shapes is largest for oblate spheroids and decreases for spheres, cubes, cylinders with small length-to-diameter ratios, and then long, thin cylinders. (c) 2013 Elsevier Masson SAS. All rights reserved.
引用
收藏
页码:54 / 64
页数:11
相关论文